Physical, Chemical, and Biological Substrate Pretreatments to Enhance Biogas Yield

  • Bruno Venturin
  • Charline Bonatto
  • Felippe Martins Damaceno
  • Jéssica Mulinari
  • Gislaine Fongaro
  • Helen Treichel
Part of the Biofuel and Biorefinery Technologies book series (BBT, volume 9)


Anaerobic digestion is an environmentally friendly technology for the stabilization and recovery of biodegradable organic waste, both agroindustrial and urban. Hydrolysis is the first and one of the main steps of the anaerobic digestion process, as it determines the overall biodegradation rate of the substrates. Fibrous materials, for example, although rich in carbon, present sugars protected by lignocellulosic structures, which hinders their biodegradability. Lipid residues present a great energetic potential; however, they are hydrophobic, which hinders their hydrolysis. Residues that have coarse granulometry tend to exhibit long periods of biodegradation due to their small surface areas and difficult solubilization. In this regard, the present chapter will discuss the application of pretreatments of substrates for anaerobic biodigestion by physical, chemical, and biological methods. The aim is to facilitate the hydrolysis and increase the energy and nutritional use of the residues in shorter time intervals, increasing the yield and optimizing the biogas production chain.


Anaerobic biodigestion Hydrolysis Biodegradability 


  1. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685CrossRefGoogle Scholar
  2. Angelidaki I, Ahring BK (2000) Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Sci Technol 41:189–194CrossRefGoogle Scholar
  3. Appels L, Baeyens J, Degreve J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energ Combust 34:755–781CrossRefGoogle Scholar
  4. Ariunbaatar J, Panico A, Esposito G, Pirozzi F, Lens PNL (2014) Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl Energy 123:143–156CrossRefGoogle Scholar
  5. Battimelli A, Torrijos M, Moletta R, Delgenès JP (2010) Slaughterhouse fatty waste saponification to increase biogas yield. Bioresour Technol 101:3388–3393CrossRefGoogle Scholar
  6. Bordeleau EL, Droste RL (2011) Comprehensive review and compilation of pretreatments for mesophilic and thermophilic anaerobic digestion. Water Sci Technol 63:291–296CrossRefGoogle Scholar
  7. Bougrier C, Delgenes JP, Carrere H (2006) Combination of thermal treatments and anaerobic digestion to reduce sewage sludge quantity and improve biogas yield. Process Saf Environ 84:280–284CrossRefGoogle Scholar
  8. Bruni E, Peter A, Angelidaki I (2010) Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresour Technol 101:8713–8717CrossRefGoogle Scholar
  9. Carlsson M, Lagerkvist A, Morgan-Sagastume F (2012) The effects of substrate pretreatment on anaerobic digestion: a review. Waste Manage 32:1634–1650CrossRefGoogle Scholar
  10. Carrere H, Antonopoulou G, Affes R, Passos F, Battimelli A (2016) Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application. Bioresour Technol 199:386–397CrossRefGoogle Scholar
  11. Castelli S (2011) Biomasse ed energia. In: Maggioli (ed), Produzione, gestione e processi di trasformazione, Milan, ItalyGoogle Scholar
  12. Chandra R, Takeuchi H, Hasegawa T (2012a) Hydrothermal pretreatment of rice straw biomass: a potential and promising method for enhanced methane production. Appl Energy 94:129–140CrossRefGoogle Scholar
  13. Chandra R, Takeuchi H, Hasegawa T (2012b) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sust Energ Rev 16:1462–1476CrossRefGoogle Scholar
  14. Chandra R, Takeuchi H, Hasegawa T, Kumar R (2012c) Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Appl Energy 43:273–282CrossRefGoogle Scholar
  15. Chandra R, Takeuchi H, Hasegawa T, Vijay VK (2015) Experimental evaluation of substrate’s particle size of wheat and rice straw biomass on methane production yield. Agric Eng Int 14:93–104Google Scholar
  16. Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol—Part A Enzym Eng Biotechnol 84–86:5–37CrossRefGoogle Scholar
  17. Choi J, Han S, Lee C (2018) Enhancement of methane production in anaerobic digestion of sewage sludge by thermal hydrolysis pretreatment. Bioresour Technol 259:207–213CrossRefGoogle Scholar
  18. Croce S, Wei Q, Imporzano GD, Dong R, Adani F (2016) Anaerobic digestion of straw and corn stover: the effect of biological process optimization and pre-treatment on total bio-methane yield and energy performance. Biotechnol Adv 34:1289–1304CrossRefGoogle Scholar
  19. de Costa MSSM, Lorin HF, de Costa LAM, Cestonaro T, Pereira DC, Bernardi FH (2016) Performance of four stabilization bioprocesses of beef cattle feedlot manure. J Environ Manage 181:443–448CrossRefGoogle Scholar
  20. do Amaral AC, Kunz A, Steinmetz RLR, Scussiato LA, Tápparo DC, Gaspareto TC (2016) Influence of solid-liquid separation strategy on biogas yield from a stratified swine production system. J Environ Manage 168:229–235Google Scholar
  21. Elliot A, Mahmood T (2012) Comparison of mechanical pretreatment methods for the enhancement of anaerobic digestion of pulp and paper waste. Water Sci Technol 84:497–505Google Scholar
  22. Esposito G, Frunzo L, Panico A, Pirozzi F (2011) Modeling the effect of the OLR and OFMSW particle size on the performances of an anaerobic co-digestion reactor. Process Biochem 46:557–565CrossRefGoogle Scholar
  23. Frigon JC, Guiot SR (2010) Biomethane production from starch and lignocellulosic crops: a comparative review. Biofuels Bioprod Biorefin 4:447–458CrossRefGoogle Scholar
  24. Gao J, Chen L, Yuan K, Huang H, Yan Z (2013) Ionic liquid pretreatment to enhance the anaerobic digestion of lignocellulosic biomass. Bioresour Technol 150:352–358CrossRefGoogle Scholar
  25. González G, López-Santín J et al (1986) Dilute acid hydrolysis of wheat straw hemicellulose at moderate temperature: a simplified kinetic model. Biotechnol Bioeng 28:288–293CrossRefGoogle Scholar
  26. Gronroos A, Pirkonen P, Ruppert O (2004) Ultrasonic depolymerization of aqueous carboxymethylcellulose. Ultrason Sonochem 11:9–12CrossRefGoogle Scholar
  27. Gu S, Xiong J, Kou W, Yi K, Zhao Y, Lun X, Zhang D (2011) Comparison of the physical-chemical properties of corn stalk by expansion and chemical pretreatments and their effect on the yield of biogas. In: International Conference on New Technology of Agricultural, pp 737–741Google Scholar
  28. Hao H, Tian Y, Zhang H, Chai Y (2017) Copper stressed anaerobic fermentation: biogas properties, process stability, biodegradation and enzyme responses. Biodegradation 28:369–381CrossRefGoogle Scholar
  29. Hartmann H, Angelidaki I, Ahring BK (2000) Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration. Water Sci Technol 41:145–153CrossRefGoogle Scholar
  30. Heiske S (2013) Improving anaerobic digestion of wheat straw by plasma-assisted pretreatment. J Atomic Mol PhysGoogle Scholar
  31. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass: a review. Bioresour Technol 100:10–18CrossRefGoogle Scholar
  32. Holtzapple MT, Jun J-H et al (1991) Ammonia fiber explosion (AFEX) pretreatment of lignocellulose. In: Symposium papers—energy from biomass and wastesGoogle Scholar
  33. Holtzapple MT, Ripley EP, Nikolaou M (1994) Saccharification, fermentation, and protein recovery from low-temperature AFEX-treated coastal bermudagrass. Biotechnol Bioeng 44:1122–1131CrossRefGoogle Scholar
  34. Izumi K, Okishio Y, Nagao N, Niwa C, Yamamoto C, Toda ST (2010) Effects of particle size on anaerobic digestion of food waste. Int Biodeterior Biodegrad 64:601–608CrossRefGoogle Scholar
  35. Jain S, Jain S, Tim I, Lee J, Wah Y (2015) A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew Sustain Energy Rev 52:142–154CrossRefGoogle Scholar
  36. Jorgensen H, Kristensen JB et al (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod BiorefGoogle Scholar
  37. Kim TH, Lee YY (2005) Pretreatment of corn stover by soaking in aqueous ammonia. Appl Biochem Biotechnol—Part A Enzym Eng Biotechnol 124:1119–1131CrossRefGoogle Scholar
  38. Kim TH, Kim JS et al (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90:39–47CrossRefGoogle Scholar
  39. Kim TH, Taylor F et al (2008) Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour Technol 99:5694–5702CrossRefGoogle Scholar
  40. Kretsinger RH, Uversky VN, Permyakov EA (2013) Encyclopedia of metalloproteins, 1st edn. Springer, New YorkGoogle Scholar
  41. Kumar D, Murthy GS (2011) Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol Biofuels 4–27Google Scholar
  42. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Method for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRefGoogle Scholar
  43. Kwiatkowska B, Bennett J, Akunna J, Walker GM, Bremner DH (2011) Stimulation of bioprocesses by ultrasound. Biotechnol Adv 29:768–780CrossRefGoogle Scholar
  44. Li H, Li C, Liu W, Zou S (2012) Optimized alkaline pretreatment of sludge before anaerobic digestion. Bioresour Technol 123:189–194CrossRefGoogle Scholar
  45. Li Y, Merrettig-Bruns U, Strauch S, Kabasci S, Chen H (2015) Optimization of ammonia pretreatment of wheat straw for biogas production. J Chem Technol Biotechnol 90:130–138CrossRefGoogle Scholar
  46. Liu X, Wang W, Gao XB, Zhou YJ, Shen RJ (2012) Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Manage (Oxford) 32:249–255CrossRefGoogle Scholar
  47. Liu S, Xu F, Ge X, Li Y (2016) Comparison between ensilage and fungal pretreatment for storage of giant reed and subsequent methane production. Bioresour Technol 209:246–253CrossRefGoogle Scholar
  48. Mahdy A, Mendez L, Ballesteros M, González-fernández C (2015) Protease pretreated Chlorella vulgaris biomass bioconversion to methane via semi-continuous anaerobic digestion. Fuel 158:35–41CrossRefGoogle Scholar
  49. Mata-Alvarez J, Mace S, Llabres P (2000) Anaerobic digestion of organic solid wastes an overview of research achievements and perspectives. Bioresour Technol 74:3–16CrossRefGoogle Scholar
  50. McGinnis GD, Wilson WW et al (1983) Biomass pretreatment with water and high-pressure oxygen. The wet-oxidation process. Ind Eng Chem Prod Res Dev. 22:352–357CrossRefGoogle Scholar
  51. Meena K, Kumar V, Vijay VK (2011) Anaerobic technology harnessed fully by using different techniques: review. In: IEEE (ed) First conference on clean energy and technology CET. Kuala LumpurGoogle Scholar
  52. Menardo S, Airoldi G, Balsari P (2012) The effect of particle size and thermal pretreatment on the methane yield of four agricultural by-products. Bioresour Technol 104:708–714CrossRefGoogle Scholar
  53. Mendes AA, Pereira EB, Castro HF De (2006) Effect of the enzymatic hydrolysis pretreatment of lipids-rich wastewater on the anaerobic biodigestion. Biochem Eng J 32:185–190CrossRefGoogle Scholar
  54. Michalska K, Miazek K, Krzystek L, Ledakowicz S (2012) Influence of pretreatment with Fenton’s reagent on biogas production and methane yield from lignocellulosic biomass. Bioresour Technol 119:72–78CrossRefGoogle Scholar
  55. Modenbach A, Nokes S (2012) The use of high-solids loading in biomass pretreatment: a review. Biotechnol Bioeng 109:1430–1442CrossRefGoogle Scholar
  56. Mussoline W, Esposito G, Giordano A, Lens P (2013) Anaerobic digestion of rice straw: a review. Crit Rev Environ Sci Technol 43:895–915CrossRefGoogle Scholar
  57. Mustafa AM, Poulsen TG, Sheng K (2016) Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Appl Energy 180:661–671CrossRefGoogle Scholar
  58. Paudel SR, Banjara SP, Choi OK, Park KY, Kim YM, Lee JW (2017) Pretreatment of agricultural biomass for anaerobic digestion: current state and challenges. Bioresour Technol 245:1194–1205CrossRefGoogle Scholar
  59. Phothilangka P, Schoen MA, Wett B (2008) Benefits and drawbacks of thermal prehydrolysis for operational performance of wastewater treatment plants. Water Sci Technol 58:1547–1553CrossRefGoogle Scholar
  60. Rajput AA, Zeshan, Visvanathan C (2018) Effect of thermal pretreatment on chemical composition, physical structure and biogas production kinetics of wheat straw. J Environ Manage 221:45–52CrossRefGoogle Scholar
  61. Rodriguez-Abalde A, Fernandez B, Silvestre G, Flotats X (2011) Effects of thermal pretreatments on solid slaughterhouse waste methane potential. Waste Manage (Oxford) 31:1488–1493CrossRefGoogle Scholar
  62. Rouches E, Herpoël-gimbert I, Steyer JP, Carrere H (2016) Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: a review. Renew Sustain Energy Rev 59:179–198CrossRefGoogle Scholar
  63. Saha BC, Qureshi N, Kennedy GJ, Cotta MA (2016) Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. Int Biodeterior Biodegrad 109:29–35CrossRefGoogle Scholar
  64. Sambusiti C, Monlau F, Ficara E, Carrère H, Malpei F (2013) A comparison of different pre-treatments to increase methane production from two agricultural substrates. Appl Energy 104:62–70CrossRefGoogle Scholar
  65. Schimpf U, Hanreich A, Mähnert P, Unmack T, Junne S, Renpenning J, Lopez-ulibarri R (2013) Improving the efficiency of large-scale biogas processes: pectinolytic enzymes accelerate the lignocellulose degradation improving the efficiency of large-scale biogas processes. J Sustain Energy Environ 4:53–60Google Scholar
  66. Shen F, Li H, Wu X, Wang Y, Zhang Q (2018) Effect of organic loading rate on anaerobic co-digestion of rice straw and pig manure with or without biological pretreatment. Bioresour Technol 250:155–162CrossRefGoogle Scholar
  67. Smagowska B, Pawlaczyk-Łuszczynska M (2013) Effects of ultrasonic noise on the human body: a bibliographic review. Int J Occup Saf Ergon 19:195–202CrossRefGoogle Scholar
  68. Song Z, Yag G, Feng Y, Ren G, Han X (2013) Pretreatment of rice straw by hydrogen peroxide for enhanced methane yield. J Integr Agric 12:1258–1266CrossRefGoogle Scholar
  69. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRefGoogle Scholar
  70. Sun C, Liu RH, Cao WX, Yin RZ, Mei YF, Zhang L (2015) Impacts of alkaline hydrogen peroxide pretreatment on chemical composition and biochemical methane potential of agricultural crop stalks. Energy Fuel 29:4966–4975CrossRefGoogle Scholar
  71. Sun MT, Fan XL, Zhao XX, Fu SF, He S, Manasa MRK, Guo R-B (2017) Effects of organic loading rate on biogas production from macroalgae: performance and microbial community structure. Bioresour Technol 235:292–300CrossRefGoogle Scholar
  72. Taherdanak M, Zilouei H (2014) Improving biogas production from wheat plant using alkaline pretreatment. Fuel 115:714–719CrossRefGoogle Scholar
  73. Taherzadeh MJ, Karimi K (2008) Pre-treatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651CrossRefGoogle Scholar
  74. Torres ML, Lloréns MCE (2008) Effect of alkaline pretreatment on anaerobic digestion of solid wastes. Waste Mange 28:2229–2234Google Scholar
  75. Tuesorn S, Wongwilaiwalin S, Champreda V, Leethochawalit M (2013) Enhancement of biogas production from swine manure by a lignocellulolytic microbial consortium. Bioresour Technol 144:579–586CrossRefGoogle Scholar
  76. Venturin B, Frumi Camargo A, Scapini T, Mulinari J, Bonatto C, Bazoti S, Pereira Siqueira D, Maria Colla L, Alves SL, Paulo Bender J, Luís Radis Steinmetz R, Kunz A, Fongaro G, Treichel H (2018) Effect of pretreatments on corn stalk chemical properties for biogas production purposes. Bioresour Technol 266:116–124CrossRefGoogle Scholar
  77. Viéitez ER, Ghosh S (1999) Biogasification of solid wastes by two-phase anaerobic fermentation. Biomass Bioenergy 16:299–309CrossRefGoogle Scholar
  78. Wan C, Li Y (2010) Microbial delignification of corn stover by Ceriporiopsis subvermispora for improving cellulose digestibility. Enzyme Microb Technol 47:31–36CrossRefGoogle Scholar
  79. Williams SD, Shinners KJ (2014) Farm-scale anaerobic storage and aerobic stability of high dry matter perennial grasses as biomass feedstocks. Biomass Bioenerg 64:91–98CrossRefGoogle Scholar
  80. Xie Y, Björkmalm J, Ma C, Willquist K, Yngvesson J, Wallberg O, Ji X (2017) Techno-economic evaluation of biogas upgrading using ionic liquids in comparison with industrially used technology in Scandinavian anaerobic digestion plants. Appl EnergyGoogle Scholar
  81. Yao Y, Bergeron AD, Davaritouchaee M (2018) Methane recovery from anaerobic digestion of urea-pretreated wheat straw. Renew Energy 115:139–148CrossRefGoogle Scholar
  82. Zeynali R, Khojastehpour M, Ebrahimi-Nik M (2017) Effect of ultrasonic pre-treatment on biogas yield and specific energy in anaerobic digestion of fruit and vegetable wholesale Market waste. Sustain Environ Res 27:259–264CrossRefGoogle Scholar
  83. Zhang G, Zhang P, Yang J, Liu H (2008) Energy-efficient sludge sonication: power and sludge characteristics. Bioresour Technol 99:9029–9031CrossRefGoogle Scholar
  84. Zhang H, Wu J, Gao L, Yu J, Yuan X, Zhu W, Wang X, Cui Z (2018) Aerobic deterioration of corn stalk silage and its effect on methane production and microbial community dynamics in anaerobic digestion. Bioresour Technol 250:828–837CrossRefGoogle Scholar
  85. Zheng M, Li X, Li L, Yang X, He Y (2009) Enhancing anaerobic biogasification of corn stover through wet state NaOH pretreatment. Bioresour Technol 100:5140–5145CrossRefGoogle Scholar
  86. Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bruno Venturin
    • 1
  • Charline Bonatto
    • 2
  • Felippe Martins Damaceno
    • 1
  • Jéssica Mulinari
    • 2
  • Gislaine Fongaro
    • 3
    • 4
  • Helen Treichel
    • 3
  1. 1.Western Paraná State UniversityCascavelBrazil
  2. 2.Federal University of Santa CatarinaFlorianópolisBrazil
  3. 3.Laboratory of Microbiology and Bioprocess, Department of Environmental Science and TechnologyFederal University of Fronteira SulErechimBrazil
  4. 4.Department of Microbiology, Imunology and Parasitology (MIP), Laboratory of Applied VirologyFederal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations