Advertisement

Current Efforts for the Production and Use of Biogas Around the World

  • Aline ViancelliEmail author
  • William Michelon
  • ElMahdy Mohamed ElMahdy
Chapter
Part of the Biofuel and Biorefinery Technologies book series (BBT, volume 9)

Abstract

Biogas is a renewable energy source that can be generated from the digestion of a variety of organic materials and waste. Organic wastes used for biogas include animal manure, human excreta and other agricultural wastes, slaughterhouses and food industries residues or even urban solid waste. However, in some developed countries it has been used corn, barley, sunflower and sorghum as other energy sources. Biogas systems differ strongly between locations, form, cost structure and usage patterns. This difference is mainly related to the development condition of the country. When implemented properly, biogas systems can serve multiple purposes. Digesters are considered a clean and alternative technology that can help distant communities with their energy necessities by improving living conditions or even economical source. Considering this, the present chapter will be addressed: (i) Biogas production around the world; (ii) Feeding material used in different continents to generate biogas; (iii) usage of biogas produced.

Keywords

Biogas substrates Bioenergy Anaerobic digestion Renewable energy 

References

  1. Al Seadi T, Rutz D, Prassl H, Köttner M, Finsterwalder T, Volk S, Janssen R (2008) Biogas handbook. BiG>East project funded by the European Commission (EIE/07/214), University of Southern Denmark Esbjerg, Denmark, p 142, ISBN 978-87-992962-0-0Google Scholar
  2. Alemán-Nava GS, Meneses-Jácome A, Cárdenas-Chávez DL, Díaz-Chavez R, Scarlat N, Dallemand JF, Parra R (2015) Bioenergy in Mexico: status and perspective. Biofuels Bioprod Biorefining 9(1):8–20CrossRefGoogle Scholar
  3. American Biogas Council (2017) Operational biogas systems in the U.S. https://www.americanbiogascouncil.org
  4. Amigun B, Parawira W, Musango JK, Aboyade AO, Badmos AS (2012) Anaerobic biogas generation for rural area energy provision in Africa. Biogas Sunil Kumar, IntechOpen.  https://doi.org/10.5772/32630. Available from: https://www.intechopen.com/books/biogas/anaerobic-biogas-generation-for-rural-area-energy-provision-in-africaGoogle Scholar
  5. Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, Kougias PG (2018) Biogas upgrading and utilization: current status and perspectives. Biotechnol AdvGoogle Scholar
  6. Bakker RRC, Elbersen HW, Poppens RP, Lesschen JP (2013) Rice straw and wheat straw-potential feedstocks for the biobased economy. NL AgencyGoogle Scholar
  7. Bielski S, Marks-Bielska R (2015) The potential for agricultural biogas production in Poland energy and clean technologies. In: Book series: international multidisciplinary scientific geoconference-SGEM, pp 575–580Google Scholar
  8. Bondesson PM, Galbe M, Zacchi G (2013) Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid. Biotechnol Biofuels 6(1):11CrossRefGoogle Scholar
  9. CBA (2017) Biogas projects in Canada. Canada Biogas Association. https://biogasassociation.ca/about_biogas/projects_canada
  10. Cooper CJ, Laing CA (2017) A macro analysis of crop residue and animal wastes as a potential energy source in Africa. J Energy South Afr 18(1):10–19Google Scholar
  11. Costa JC, Barbosa SG, Alves MM, Sousa DZ (2012) Thermochemical pre-and biological co-treatments to improve hydrolysis and methane production from poultry litter. Biores Technol 111:141–147CrossRefGoogle Scholar
  12. Edwards J, Othman M, Burn S (2015) A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia. Renew Sustain Energy Rev 52:815–828CrossRefGoogle Scholar
  13. European Biogas Association (2015) EBA biomethane & biogas report 2015. Disponible sur http://european-biogas.eu/2015/12/16/biogasreport2015/ Consulté le 5(04)
  14. European Biogas Association (Brussels) (2014) EBA biogas report. http://europeanbiogas.eu/2014/12/16/4331/
  15. European Statistics (2017). http://ec.europa.eu/eurostat
  16. Garfí M, Martí-Herrero J, Garwood A, Ferrer I (2016) Household anaerobic digesters for biogas production in Latin America: a review. Renew Sustain Energy Rev 60:599–614CrossRefGoogle Scholar
  17. Global Intelligence Alliance (2010) How to profit from biogas market developments GIA industries white paper. United StatesGoogle Scholar
  18. Global Methane Initiative (2018) Global map of methane sitesGoogle Scholar
  19. Grando RL, de Souza Antune AM, da Fonseca FV, Sánchez A, Barrena R, Font X (2017) Technology overview of biogas production in anaerobic digestion plants: a European evaluation of research and development. Renew Sustain Energy Rev 80:44–53CrossRefGoogle Scholar
  20. Guerini Filho M, Lumi M, Hasan C, Marder M, Leite LC, Konrad O (2018) Energy recovery from wine sector wastes: a study about the biogas generation potential in a vineyard from Rio Grande do Sul, Brazil. Sustain Energy Technol Assess 29:44–49Google Scholar
  21. Hendroko SR, Sasmito A, Adinurani PG, Nindita A, Yudhanto AS, Nugroho YA, Tony L, Mel M (2015) The study of slurry recirculation to increase biogas productivity from Jatropha curcas Linn. Capsule Husk in Two Phase Digestion. Energy Proc 65:300–308CrossRefGoogle Scholar
  22. Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Biores Technol 100(22):5478–5484CrossRefGoogle Scholar
  23. Igliński B, Buczkowski R, Iglińska A, Cichosz M, Piechota G, Kujawski W (2012) Agricultural biogas plants in Poland: investment process, economical and environmental aspects, biogas potential. Renew Sustain Energy Rev 16(7):4890–4900CrossRefGoogle Scholar
  24. International Energy Agency (2016) IEA Bioenergy Task 37 Country Reports Summary 2015. http://www.ieabioenergy.com/wp-content/uploads/2015/01/IEA-Bioenergy-Task-37-Country-Report-Summary-2014_Final.pdf
  25. International Gas Union (2015) A global review of drivers and regional trends, International Gas Union (IGU). Biogas—from refuse to energy. https://www.igu.org/sites/default/files/node-page-field_file/IGU%20Biogas%20Report%202015.pdf
  26. IRENA (2018) Renewable capacity statistics 2018. International Renewable Energy Agency (IRENA), Abu Dhabi. ISBN: 978-92-9260-057-0Google Scholar
  27. Jabłoński SJ, Kułażyński M, Sikora I, Łukaszewicz M (2017) The influence of different pretreatment methods on biogas production from Jatropha curcas oil cake. J Environ Manage 203:714–719CrossRefGoogle Scholar
  28. Kapoor R, Vijay VD (2013) 5.2 Evaluation of existing low cost gas bottling systems for vehicles use adaption in developing economies. Public deliverable EU FP7 VALORGAS project (grant agreement no. 241334)Google Scholar
  29. KC S, Takara D, Hashimoto AG, Khanal SK (2014) Biogas as a sustainable energy source for developing countries: opportunities and challenges. renew Sustain Energy Rev 31:846–859CrossRefGoogle Scholar
  30. Krzywika A, Szwaja S (2017) Putrid Potatoes as biomass charge to an agricultural biomass-to-biogas power plant. Energy Proc 118:40–45CrossRefGoogle Scholar
  31. Linville JL, Shen Y, Wu MM, Urgun-Demirtas M (2015) Current state of anaerobic digestion of organic wastes in North America. Curr Sustain Renew Energy Rep 2(4):136–144CrossRefGoogle Scholar
  32. López I (2016) The potential of biogas production in Uruguay. Renew Sustain Energy Rev 54:1580–1591CrossRefGoogle Scholar
  33. López I, Borzacconi L (2017) Anaerobic digestion for agro-industrial wastes: a latin American perspective. Int J Eng Appl Sci 4(8):71–76Google Scholar
  34. Luostarinen S, Normak A, Edstrøm M (2011) Overview of biogas technology. Over Biogas Technol 47. (Baltic manure WP6 Energy potentials)Google Scholar
  35. Ministry of New and Renewable Energy (2014) Renewable energy for rural applications, Annual Report 2013–2014. http://mnre.gov.in/file-manager/annual-report/2013-2014/EN/rerp.html
  36. Muñoz R, Meier L, Diaz I, Jeison D (2015) A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Rev Environ Sci Bio/Technol 14(4):727–759CrossRefGoogle Scholar
  37. Nielsen HB, Angelidaki I (2008) Strategies for optimizing recovery of the biogas process following ammonia inhibition. Biores Technol 99(17):7995–8001CrossRefGoogle Scholar
  38. Nordic Energy Research (2010) Mapping biogas in the Nordic Countries. Oslo: Sund Energy As, 24 p. http://www.nordicenergy.org/wp-content/uploads/2012/01/mapping_biogas_in_the_nordic_countries_final1.pdf
  39. Omer AM, Fadalla Y (2013) Biogas technology in Sudan, technical note. Renew Energy 28:499–507Google Scholar
  40. Passos F, Uggetti E, Carrère H, Ferrer I (2014) Pretreatment of microalgae to improve biogas production: a review. Biores Technol 172:403–412CrossRefGoogle Scholar
  41. REN21 (2018) Renewables 2018 Global Status Report (Paris: REN21 Secretariat). ISBN: 978-3-9818911-3-3Google Scholar
  42. Rupf GV, Bahri PA, de Boer K, McHenry MP (2015) The energy production potential from organic solid waste in Sub-Saharan Africa. In: International conference on solid waste 2015: knowledge transfer for sustainable resource management (ICSW2015), 19–23 May, Hong KongGoogle Scholar
  43. Scarlat N, Dallemand JF, Fahl F (2018) Biogas: developments and perspectives in Europe. Renew Energy 129:457–472CrossRefGoogle Scholar
  44. Skovsgaard L, Jacobsen HK (2017) Economies of scale in biogas production and the significance of flexible regulation. Energy Policy 101:77–89CrossRefGoogle Scholar
  45. SNV (2010) Domestic biogas newsletter, issue 3, Aug 2010Google Scholar
  46. Tápparo DC, Viancelli A, Amaral ACD, Fongaro G, Steinmetz RLR, Magri ME, Kunz A (2018) Sanitary effectiveness and biogas yield by anaerobic co-digestion of swine carcasses and manure. Environ Technol (just-accepted):1–28Google Scholar
  47. Tsapekos P, Kougias PG, Treu L, Campanaro S, Angelidaki I (2017) Process performance and comparative metagenomic analysis during co-digestion of manure and lignocellulosic biomass for biogas production. Appl Energy 185:126–135CrossRefGoogle Scholar
  48. Tuesorn S, Wongwilaiwalin S, Champreda V, Leethochawalit M, Nopharatana A, Techkarnjanaruk S, Chaiprasert P (2013) Enhancement of biogas production from swine manure by a lignocellulolytic microbial consortium. Biores Technol 144:579–586CrossRefGoogle Scholar
  49. US EPA (2017) United States environmental protection agency AgStar program biogas recovery in the agriculture sector. https://www.epa.gov/agstar
  50. Vasco-Correa J, Khanal S, Manandhar A, Shah A (2018) Anaerobic digestion for bioenergy production: global status, environmental and techno-economic implications, and government policies. Biores Technol 247:1015–1026CrossRefGoogle Scholar
  51. Venturin B, Camargo AF, Scapini T, Mulinari J, Bonatto C, Bazoti S, Steinmetz RLR (2018) Effect of pretreatments on corn stalk chemical properties for biogas production purposes. Bioresour TechnolGoogle Scholar
  52. Weiland P (2003) Production and energetic use of biogas from energy crops and wastes in Germany. Appl Biochem Biotechnol 109(1–3):263–274CrossRefGoogle Scholar
  53. Wilkinson A (2011) Anaerobic digestion of corn ethanol thin stillage for biogas production in batch and by downflow fixed film reactor (Doctoral dissertation, Université d’Ottawa/University of Ottawa)Google Scholar
  54. World Bioenergy Association (WBA) (2017) WBA global bioenergy statistics 2017.  https://doi.org/10.1016/0165-232X(80)90063-4
  55. Yong Z, Dong Y, Zhang X, Tan T (2015) Anaerobic co-digestion of food waste and straw for biogas production. Renew Energy 78:527–530CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aline Viancelli
    • 1
    Email author
  • William Michelon
    • 1
  • ElMahdy Mohamed ElMahdy
    • 2
  1. 1.Environmental EngineeringUniversidade do ContestadoConcórdiaBrazil
  2. 2.Environmental Virology Laboratory, Water Pollution Research DepartmentNational Research CentreDokki, GizaEgypt

Personalised recommendations