Advertisement

Waste Biomass and Blended Bioresources in Biogas Production

  • Luciane Maria Colla
  • Ana Cláudia Freitas Margarites
  • Andressa Decesaro
  • Francisco Gerhardt Magro
  • Naiara Kreling
  • Alan Rempel
  • Thaís Strieder Machado
Chapter
Part of the Biofuel and Biorefinery Technologies book series (BBT, volume 9)

Abstract

Global energy demand is getting higher, and most of this energy is produced through fossil fuels. Recent studies report that anaerobic digestion is an efficient alternative to produce biogas. Moreover, the transformation of complex organic materials into a source of clean and renewable energy reduces the emission of greenhouse gases and can produce as by-product a high-value fertilizer for growing crops. The anaerobic co-digestion is an option to solve the disadvantages of single substrate digestion system, being the chemical composition and properties of the substrates, the operating parameters (temperature, pH, charge rate, etc.), the biodegradability, bioaccessibility, and bioavailability, important parameters to be optimized. The main materials that could be used for biogas production are waste from cities, residues from the production of other biofuels, agro-industrial waste in general, agricultural crops, straws, or microalgae biomass obtained by cultivation in wastewater. However, some of these materials, specially raw materials, need to be treated to improve the biogas production. The aim of this chapter is to review the main materials that could be used for biogas production and the factors to optimize the production.

Keywords

Biogas Co-digestion Pretreatments 

References

  1. Abouelenien F, Fujiwara W, Namba Y, Kosseva M (2010) Improved methane fermentation of chicken manure via ammonia removal by biogas recycle. Bioresour Technol 10:6368–6373CrossRefGoogle Scholar
  2. Achinas S, Achinas V, Euverink GJW (2017) A technological overview of biogas production from biowaste. Engineering 3:299–307CrossRefGoogle Scholar
  3. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685CrossRefGoogle Scholar
  4. Agustini CA, Spier F, Costa M, Gutterres M (2018a) Biogas production for anaerobic co-digestion of tannery solid wastes under presence and absence of the tanning agent. Resour Conserv Recycl 130:51–59CrossRefGoogle Scholar
  5. Agustini C, Costa M, Gutterres M (2018b) Biogas production from tannery solid wastes–scale-up and cost saving analysis. J Cleaner Prod 187:158–164CrossRefGoogle Scholar
  6. Alexandropoulou M, Antonopoulou G, Fragkou E, Ntaikou I, Lyberatos G (2016) Fungal pretreatment of willow sawdust and its combination with alkaline treatment for enhancing biogas production. J Environ Manag 203:704–713CrossRefGoogle Scholar
  7. Amirta R, Tanabe T, Watanabe T, Honda Y, Kuwahara M, Watanabe T (2006) Methane fermentation of Japanese cedar wood pretreated with a white rot fungus Ceriporiopsis subvermispora. J Biotechnol 123:71–77CrossRefGoogle Scholar
  8. Amon T, Amon B, Kryvoruchko V, Zollitsch W, Mayer K, Gruber L (2007) Biogas production from maize and dairy cattle manure—influence of biomass composition on the methane yield. Agric Ecosyst Environ 118:173–182CrossRefGoogle Scholar
  9. ANEEL (2017) The Brazilian National Electric Energy Agency. Management Information BulletinGoogle Scholar
  10. Aneks diagnostyczny (2014) Regionalny Program Operacyjny Województwa Lubelskiego na lata 2014–2020. Załącznik nr 1 do projektu Regionalnego Programu Operacyjnego Województwa Lubelskiego na lata 2014–2020Google Scholar
  11. Anyaoku CC, Baroutian S (2018) Decentralized anaerobic digestion systems for increased utilization of biogas from municipal solid waste. Renew Sustain Energy Rev 90:982–991CrossRefGoogle Scholar
  12. Appels L, Baeyens J, Degreve J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34:755–781CrossRefGoogle Scholar
  13. Appels L, Lauwers J, Degreve J, Helsen L, Lievens B, Willems K, Impe JV, Dewil R (2011) Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sustain Energy Rev 15:4295–4301CrossRefGoogle Scholar
  14. Aslanzadeh S, Berg A, Taherzadeh MJ, Horváth IS (2014) Biogas production from N-methylmorpholine-N-oxide (NMMO) pretreated forest residues. Appl Biochem Biotechnol 172:2998–3008CrossRefGoogle Scholar
  15. Barros RM, Filho GLT, Santos AHM, Ferreira CH, Pieroni MF, Moura JS, Abe HSS, Brito LM, Santos IFS, Ribeiro EM, Freitas JVR (2018) A potential of the biogás generating and energy recovering from municipal solid waste. Renew Energy Focus 25:4–16CrossRefGoogle Scholar
  16. Barua VB, Goud VV, Kalamdhad AS (2018) Microbial pretreatment of water hyacinth for enhanced hydrolysis followed by biogas production. Renew Energy 126:21–29CrossRefGoogle Scholar
  17. Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pre-treatment for bioconversion of lignocellulosic biomass. Renew Sustain Energy Rev 36:91–106CrossRefGoogle Scholar
  18. Belostotskiy DE, Ziganshina EE, Siniagina M, Boulygina EA, Miluykov VA, Ziganshin AM (2015) Impact of the substrate loading regime and phosphoric acid supplementation on performance of biogas reactors and microbial community dynamics during anaerobic digestion of chicken wastes. Bioresour Technol 193:42–52CrossRefGoogle Scholar
  19. Bolzonella D, Pavan P, Mace S, Cecchi F (2006) Dry anaerobic digestion of differently sorted organic municipal solid waste: a full-scale experience. Water Sci Technol 53:23–32CrossRefGoogle Scholar
  20. Bonilla S, Choolaei Z, Meyer T, Edwards EA, Alexander F, Yakunin AFD, Allen DG (2018) Evaluating the effect of enzymatic pretreatment on the anaerobic digestibility of pulp and paper biosludge. Biotechnol Rep 17:77–85CrossRefGoogle Scholar
  21. Browne JD, Allen E, Murphy JD (2014) Assessing the variability in biomethane production from the organic fraction of municipal solid waste in batch and continuous operation. Appl Energy 128:307–314CrossRefGoogle Scholar
  22. Bruton T, Lyons H, Lerat Y, Stanley M, Rasmussen MB (2009) A review of the potential of marine algae as a source of biofuel in Ireland. Sustainable Energy Ireland, DublinGoogle Scholar
  23. Budiyono Primaloka AD, Ardhannari L, Matin HHA, Sumardiono S (2018) Study of biogas production from cassava industrial waste by anaerobic process. In: MATEC Web Conference on 2018, p 156Google Scholar
  24. Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P, Lin H, Han S (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process Technol 160:196–206CrossRefGoogle Scholar
  25. Cheng XY, Liu CZ (2010) Enhanced biogas production from herbal-extraction process residues by microwave-assisted alkaline pretreatment. J Chem Technol Biotechnol 85:127–131CrossRefGoogle Scholar
  26. Cho S, Park S, Seon J, Yu J, Lee T (2013) Evaluation of thermal, ultrasonic and alkali pretreatments on mixed-microalgal biomass to enhance anaerobic methane production. Bioresour Technol 143:330–336CrossRefGoogle Scholar
  27. Clercq DD, Wen Z, Fan F, Caicedo L (2016) Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks: A case study in Beijing. Renew Sustain Energy Rev 59:1676–1685CrossRefGoogle Scholar
  28. Costa JC, Barbosa SG, Alves MM, Sousa DZ (2012) Thermochemical pre- and biological co-treatments to improve hydrolysis and methane production from poultry litter. Bioresour Technol 11:141–147CrossRefGoogle Scholar
  29. De La Rubia MA, Fernandez-Cegri V, Raposo F, Borja R (2011) Influence of particle size and chemical composition on the performance and kinetics of anaerobic digestion process of sunflower oil cake in batch mode. Biochem Eng J 58–59:162–167CrossRefGoogle Scholar
  30. Deng L, Liu Y, Zheng D, Wang L, Pu X, Song L, Wang Z, Lei Y, Chen Z, Long Y (2017) Application and development of biogas technology for the treatment of waste in China. Renew Sustain Energy Rev 70:845–851CrossRefGoogle Scholar
  31. Feng L, Chen ZJ (2008) Research progress on dissolution and functional modification of cellulose in ionic liquid. J Mol Liq 142:1–5CrossRefGoogle Scholar
  32. Filho GM, Lumi M, Marder M, Leite LCS (2018) Energy recovery from wine sector wastes: a study about the biogas generation potential in a vineyard from Rio Grande do Sul, Brazil. Sustain Energy Technol Assess 29:44–49Google Scholar
  33. Florkowski WJ, Us A, Klepacka AM (2018) Food waste in rural households support for local biogas production in Lubelskie Voivodship (Poland). Resour Conserv Recycl 136:46–52CrossRefGoogle Scholar
  34. Gallert C, Winter J (2005) Bacterial metabolism in wastewater treatment systems. In: Jördening HJ, Winter J (eds) Environmental biotechnology: concepts and applications. Wiley-VCH, Weinheim, pp 1–48Google Scholar
  35. Gámez S, González-Cabriales JJ, Ramírez JA, Garrote G, Vázquez M (2006) Study of the hydrolysis of sugar cane bagasse using phosphoric acid. J Food Eng 74:78–88CrossRefGoogle Scholar
  36. Gonzáleza LM, Correaa DF, Ryana S, Jensenb PD, Prattc S, Schenka PM (2018) Integrated biodiesel an biogas production from microalgae: towards a sustainable closed loop through nutrient recycling. Renew Sustain Energy Rev 82:1137–1148CrossRefGoogle Scholar
  37. González-Fernández C, Sialve B, Bernet N, Steyer JP (2013) Effect of organic loading rate on anaerobic digestion of thermally pretreated Scenedesmus sp. Biomass. Bioresour Technol 129:219–223Google Scholar
  38. Gutiérrez EC, Wall DM, O’shea R, Novelo RM, Gómez MM, Murphy JD (2018) An economic and carbon analysis of biomethane production from food waste to be used as a transport fuel in Mexico. J Cleaner Prod 196:852–862Google Scholar
  39. Hagos K, Zong J, Li D, Liu C, Lu X (2017) Anaerobic co-digestion process for biogas production: progress, challenges and perspectives. Renew Sustain Energy Rev 76:1485–1496CrossRefGoogle Scholar
  40. Hartmann H, Angelidaki I, Ahring BK (2002) Co-digestion of the organic fraction of municipal waste with other waste types. In: Mata-Alvarez J (ed) Biomethanization of the organic fraction of municipal solid wastes. IWA Publishing, UK, London, pp 181–199Google Scholar
  41. He YF, Pang YZ, Li XJ, Liu YP, Li RP, Zheng MX (2009) Investigation on the changes of main compositions and extractives of rice straw pretreated with sodium hydroxide for biogas production. Energy Fuel 23:2220–2224CrossRefGoogle Scholar
  42. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18CrossRefGoogle Scholar
  43. Hijazi O, Munro S, Zerhusen B, Effenberger M (2016) Review of life cycle assessment for biogas production in Europe. Renew Sustain Energy Rev 54:1291–1300CrossRefGoogle Scholar
  44. Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100:5478–5484CrossRefGoogle Scholar
  45. Hultberg M, Lind O, Birgersson G, Asp H (2017) Use of the effluent from biogas production for cultivation of Spirulina. Bioprocess Biosyst Eng 40:625–631CrossRefGoogle Scholar
  46. Kabir MM, Rajendran K, Taherzadeh MJ, Horváth IS (2015) Experimental and economical evaluation of bioconversion of forest residues to biogas using organosolv pretreatment. Bioresour Technol 178:201–208CrossRefGoogle Scholar
  47. Karimi S, Karimi K (2018) Efficient ethanol production from kitchen and garden wastes and biogas from the residues. J Cleaner Prod 187:37–45CrossRefGoogle Scholar
  48. Karunanithy C, Muthukumarappan K (2010) Influence of extruder temperature and screw speed on pretreatment of corn stover while varying enzymes and their ratios. Appl Biochem Biotechnol 162:264–279CrossRefGoogle Scholar
  49. Kavitha S, Banu JR, Priya AA, Uan DK, Yeom IT (2017) Liquefaction of food waste and its impacts on anaerobic biodegradability, energy ratio and economic feasibility. Appl Energy 208:228–238CrossRefGoogle Scholar
  50. Kayhanian M, Hardy S (1994) The impact of four design parameters on the performance of a high-solids anaerobic digestion of municipal solid waste for fuel gas production. Environ Technol 15:557–567CrossRefGoogle Scholar
  51. Kobayashi T, Kuramochi H, Xu KQ (2017) Variable oil properties and biomethane production of grease trap waste derived from different resources. Inter Biodeterior Biodegrad 119:273–281CrossRefGoogle Scholar
  52. Kratky L, Jirout T (2011) Biomass size reduction machines for enhancing biogas production. Chem Eng Technol 34:391–399CrossRefGoogle Scholar
  53. Kroger M, Muller-Langer F (2012) Review on possible algal-biofuel production processes. Biofuels 3:33–49CrossRefGoogle Scholar
  54. Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sustain Energy Rev 90:877–891CrossRefGoogle Scholar
  55. Lalak J, Kasprzycka A, Martyniak D, Tys J (2016) Effect of biological pretreatment of Agropyronelongatum ‘BAMAR’ on biogas production by anaerobic digestion. Bioresour Technol 200:194–200CrossRefGoogle Scholar
  56. Levis JW, Barlaz MA, Themelis NJ, Ulloa P (2010) Assessment of the state of food waste treatment in the United States and Canada. Waste Manag 30:1486–1494CrossRefGoogle Scholar
  57. Li Y, Zhang R, Chang C, Liu G, He Y, Liu X (2013a) Biogas production from codigestion of corn stover and chicken manure under anaerobic wet, hemisolid, and solid state conditions. Bioresour Technol 149:406–412CrossRefGoogle Scholar
  58. Li Y, Zhang R, Liu X, Chang C, Xiao X, Lu F, He Y, Liu G (2013b) Evaluating methane production from anaerobic mono- and Co-digestion of kitchen waste, corn stover, and chicken manure. Energy Fuels 27:189–194CrossRefGoogle Scholar
  59. Li J, Zhang R, Siddhu MAH, He Y, Wang W, Li Y, Chen C, Liu G (2015) Enhancing methane production of corn stover through a novel way: sequent pretreatment of potassium hydroxide and steam explosion. Bioresour Technol 181:345–350CrossRefGoogle Scholar
  60. Lin Y, Wang D, Wang L (2010) Biological pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge. Waste Manag Res 28:800–810CrossRefGoogle Scholar
  61. Liu LY, Chen HZ (2006) Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chin Sci Bull 51:2432–2436CrossRefGoogle Scholar
  62. Lopes ACP, Silva CM, Rosa AP, Rodrigues FA (2017) Biogas production from thermophilic anaerobic digestion of kraft pulp mill sludge. Renew Energy 124:40–49CrossRefGoogle Scholar
  63. Mannucci A, Munz G, Lubello C (2010) Anaerobic treatment of vegetable tannery wastewaters: a review. Desalination 264:1–8CrossRefGoogle Scholar
  64. Marousek J (2012) Finding the optimal parameters for the steam explosion process of hay. Rev Téc Ing Univ Zulia 35(2):170–178Google Scholar
  65. Martínez PM, Bakker R, Harmsen P, Gruppen H, Kabel M (2015) Importance of acid or alkali concentration on the removal of xylan and lignin for enzymatic cellulose hydrolysis. Ind Crop Prod 64:88–96CrossRefGoogle Scholar
  66. McDonough TJ (1992) The chemistry of organosolv delignification. Tappi J 76:186–193Google Scholar
  67. Mohamad IN, Rohani R, Nor MTM, Claassen P, Abd RMS, Mastar MMS, Rolsi MI (2017) An overview of gas-upgrading technologies for biohydrogen produced from treatment of palm oil mill effluent. J Eng Sci Technol 12:725–755Google Scholar
  68. Monlau F, Sambusiti C, Barakat A, Guo XM, Latrille E, Trably E, Steyer JP, Carrere H (2012) Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials. Environ Sci Technol 46:12217–12225CrossRefGoogle Scholar
  69. Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93CrossRefGoogle Scholar
  70. Morero B, Vicentin R, Campanella EA (2017) Assessment of biogas production in Argentina from co-digestion of sludge and municipal solid waste. Waste Manag 61:195–205CrossRefGoogle Scholar
  71. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRefGoogle Scholar
  72. Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56CrossRefGoogle Scholar
  73. Ng CA, Wong LY, Chai HY, Bashir MJK, Ho CD, Nisar H, Lo PK (2017) Investigation on the performance of hybrid anaerobic membrane bioreactors for fouling control and biogas production in palm oil mill effluent treatment. Water Sci TechnolGoogle Scholar
  74. Nielfa A, Cano R, Fdz-Polanco M (2015) Theoretical methane production generated by the codigestion of organic fraction municipal solid waste and biological sludge. Biotechnol Rep 5:14–21CrossRefGoogle Scholar
  75. Ostovareh S, Karimi K, Zamani A (2015) Efficient conversion of sweet sorghum stalks to biogas and ethanol using organosolv pretreatment. Ind Crops Prod 66:170–177CrossRefGoogle Scholar
  76. Patinvoh RJ, Osadolor OA, Chandolias K, Horváth IS, Taherzadeh MJ (2017) Innovative pretreatment strategies for biogas production. Bioresour Technol 224:13–24CrossRefGoogle Scholar
  77. Paudel SR, Banjara SP, Choi OK, Park KY, Kim YM, Lee JW (2017) Pretreatment of agricultural biomass for anaerobic digestion: current state and challenges. Bioresour Technol. 245:1194–1205CrossRefGoogle Scholar
  78. Pierre JSP, Duran L, Heiningen AV (2015) Fast pyrolysis of muconic acid and formic acid salt mixtures, J Anal Appl Pyrolysis 113:591–598Google Scholar
  79. Pilli S, Yan S, Tyagi RD, Surampalli RY (2014) Thermal pretreatment of sewage sludge to enhance anaerobic digestion: a review. Crit Rev Environ Sci Technol 45:669–702CrossRefGoogle Scholar
  80. Prabakar D, Suvetha SK, Manimudi VT, Mathimani T, Kumar G, Rene ER, Pugazhendhi A (2018) Pretreatment technologies for industrial effluents: critical review on bioenergy production and environmental concerns. J Environ Manage 218:165–180CrossRefGoogle Scholar
  81. Priebe GPS, Kipper E, Gusmão AL, Marcilio NR, Gutterres M (2016) Anaerobic digestion of chrome-tanned leather waste for biogas production. J Cleaner Prod 129:410–416CrossRefGoogle Scholar
  82. Raposo F, De La Rubia MA, Fernández-Cegrí V, Borja R (2012) Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renew Sustain Energy Rev 16:861–877CrossRefGoogle Scholar
  83. Ravindran R, Jaiswal AK (2016) A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour Technol 199:92–102CrossRefGoogle Scholar
  84. Rempel A (2018) Produção de bioetanol e biometano a partir da biomassa de Spirulina sp. Dissertação de mestrado - Faculdade de Engenharia e Arquitetura, Universidade de Passo Fundo. Passo Fundo, p 87Google Scholar
  85. Righi S, Oliviero L, Pedrini M, Buscaroli A, Casa CD (2013) Life cycle assessment of management systems for sewage sludge and food waste: centralized and decentralized approaches. J Cleaner Prod 44:8–17CrossRefGoogle Scholar
  86. Rodriguez C, Alaswad A, Benyounis KY, Olabi AG (2017) Pretreatment techniques used in biogas production from grass. Renew Sustain Energy Rev 68:1193–1204CrossRefGoogle Scholar
  87. Saharan BS, Sharma D, Sahu R, Sahin O, Warren A (2013) Towards algal biofuel production: a concept of green bioenergy development. Innov Rom Food Biotechnol 1:1–21Google Scholar
  88. Santos IFS, Vieira NDB, Nóbrega LGB, Barros RM, Filho GLT (2018) Assessment of potential biogas production from multiple organic wastes in Brazil: impact on energy generation, use, and emissions abatement. Resour Conserv Recycl 131:54–63CrossRefGoogle Scholar
  89. Schroyen M, Vervaeren H, Vandepitte H, Stijn WH, Hulle V, Raes K (2015) Effect of enzymatic pretreatment of various lignocellulosic substrates on production of phenolic compounds and biomethane potential. Biores Technol 192:696–702CrossRefGoogle Scholar
  90. Shrestha S, Fonolla X, Khanal SK, Raskin L (2017) Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: current status and future perspectives. Bioresour Technol 245:1245–1257CrossRefGoogle Scholar
  91. Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass and overview. Bioresour Technol 199:76–82CrossRefGoogle Scholar
  92. Solarte-Toro JC, Chacón-Pérez Y, Cardona-Alzate CA (2018) Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electron J Biotechnol 33:52–62CrossRefGoogle Scholar
  93. Song Z, Yang G, Liu X, Yan Z, Yuan Y, Liao Y (2014) Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion. PLoS ONE 9(6):e93801CrossRefGoogle Scholar
  94. Sorensen B (2000) Renewable energy: its physics, engineering, environmental impacts, economics & planning, 2nd edn. Academic Press, MillbraeGoogle Scholar
  95. Suksong W, Jehlee A, Singkhala A, Kongjan P, Prasertsan P, Imai T, O-Thong S (2017) Thermophilic solid-state anaerobic digestion of solid waste residues from palm oil mill industry for biogas production. Ind Crops Prod 95:502–511CrossRefGoogle Scholar
  96. Sun Y, Cheng JJ (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRefGoogle Scholar
  97. Surendra KC, Takara D, Hashimoto AG, Khanal SK (2014) Biogas as a sustainable energy source for developing countries: opportunities and challenges. Renew Sustain Energy Rev 31:846–859CrossRefGoogle Scholar
  98. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651CrossRefGoogle Scholar
  99. Takeda H (1996) Cell wall sugars of some Scenedesmus species. Photochemistry 42(3):673–675CrossRefGoogle Scholar
  100. Tyagi VK, Fdez-Güelfo LA, Zhou Y, Álvarez-Gallego CJ, Garcia LIR, Ng WJ (2018) Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges. Renew Sustain Energy Rev 93:380–399CrossRefGoogle Scholar
  101. Uggetti E, Passos F, Sole M, Garfi M, Ferrer I (2017) Recent achievements in the production of biogas from microalgae. Waste Biomass 8:129–139CrossRefGoogle Scholar
  102. Varol A, Ugurlu A (2016) Biogas production from microalgae (Spirulina platensis) in a two stage anaerobic system. Waste Biomass 7:193–200CrossRefGoogle Scholar
  103. Venturin B, Camargo AF, Scapini T, Mulinari J, Bonatto C, Bazoti S, Siqueira DP, Colla LM, Alves S Jr, Bender JP, Steinmetz RLR, Kunz A, Fongaro G, Treichel H (2018) Effect of pretreatments on corn stalk chemical properties for biogas production purposes. Bioresour Technol 266:116–124CrossRefGoogle Scholar
  104. Wang X, Yang G, Feng Y, Ren G, Han X (2012) Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic codigestion of dairy, chicken manure and wheat straw. Bioresour Technol 2012(120):78–83Google Scholar
  105. Wang F, Zhang D, Wu H, Yi W, Fu P, Li Y, Li Z (2016) Enhancing biogas production of corn stover by fast pyrolysis pretreatment. Bioresour Technol 218:731–736CrossRefGoogle Scholar
  106. Williams BA, Van Der Poel AFB, Boer H, Tamminga S (1997) The effect of extrusion conditions on the fermentability of wheat straw and corn silage. J Sci Food Agric 74:117–124CrossRefGoogle Scholar
  107. Yachmenev V, Condon B, Klasson T, Lambert A (2009) Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. J Bio Mater Bioenergy 3:25–31CrossRefGoogle Scholar
  108. Yadvika TR, Kohli SS, Rana V (2004) Enhancement of biogas production from solid substrates using different techniqueseea review. Bioresour Technol 95:1–10CrossRefGoogle Scholar
  109. Zhan X, Wang D, Bean SR, Mo X, Sun XS, Boyle D (2006) Ethanol production from supercritical-fluid-extrusion cooked sorghum. Ind Crops Prod 23:304–310CrossRefGoogle Scholar
  110. Zhang Q, He J, Tian M, Mao Z, Tang L, Zhang J et al (2011) Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium. Bioresour Technol 102:8899–8906CrossRefGoogle Scholar
  111. Zhao J, Zheng Y, Li Y (2014) Fungal pretreatment of yard trimmings for enhancement of methane yield from solid-state anaerobic digestion. Bioresour Technol 156:176–181CrossRefGoogle Scholar
  112. Zhao X, Luo K, Zhang Y, Zheng Z, Cai Y, Wen B, Cui Z, Wang X (2018) Improving the methane yield of maize straw: focus on the effects of pretreatment with fungi and their secreted enzymes combined with sodium hydroxide. Bioresour Technol 250:204–213CrossRefGoogle Scholar
  113. Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53CrossRefGoogle Scholar
  114. Zhou S, Zhang Y, Dong Y (2012) Pretreatment for biogas production by anaerobic fermentation of mixed corn stover and cow dung. Energy 46:644–648CrossRefGoogle Scholar
  115. Zhu SD (2008) Perspective used of ionic liquids for the efficient utilization of lignocellulosic materials. J Chem Technol Biotechnol 83:777–779CrossRefGoogle Scholar
  116. Ziganshina EE, Belostotskiy DE, Shushlyaev RV, Miluykov VA, Vankov PY, Ziganshin AM (2014) Microbial community diversity in anaerobic reactors digesting turkey, chicken, and swine wastes. J Microbiol Biotechnol 2014(24):1464–1472CrossRefGoogle Scholar
  117. Zubrowska-Sudol M, Walczak J (2014) Effects of mechanical disintegration of activated sludge on the activity of nitrifying and denitrifying bacteria and phosphorus accumulating organisms. Water Res 61:200–209CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luciane Maria Colla
    • 1
  • Ana Cláudia Freitas Margarites
    • 1
  • Andressa Decesaro
    • 1
  • Francisco Gerhardt Magro
    • 1
  • Naiara Kreling
    • 1
  • Alan Rempel
    • 1
  • Thaís Strieder Machado
    • 1
  1. 1.Faculty of Engineering and ArchitectureUniversity of Passo FundoBairro São José, Passo FundoBrazil

Personalised recommendations