Advertisement

Programming Plants for Climate Resilience Through Symbiogenics

  • Rusty RodriguezEmail author
  • Alec Baird
  • Sang Cho
  • Zachery Gray
  • Evan Groover
  • Roman Harto
  • Marian Hsieh
  • Katie Malmberg
  • Ryan Manglona
  • Malia Mercer
  • Natalie Nasman
  • Tia Nicklason
  • Melissa Rienstra
  • Alex Van Inwegen
  • Andy VanHooser
  • Regina Redman
Chapter

Abstract

All plants in natural ecosystems are thought to be symbiotic with fungal endophytes, some of which confer abiotic stress tolerance (drought, temperature, salinity). Recently, some of these fungal endophytes were commercialized as a product, BioEnsure®, to confer abiotic stress tolerance to food crops (www.adsymtech.com, Redman and Rodriguez, Functional importance of the plant endophytic microbiome: implications for agriculture, forestry and bioenergy, Springer, 2017). These endophytes enhance crop production on marginal lands and diminish the impacts of high temperatures on crop fertilization. Yield results from endophyte-colonized monocot and eudicot plants are remarkable and directly proportional to stress levels. Under low stress, BioEnsure® yield averages are 3% above control plants and increase to 26% under high stress. This was best exemplified in Rajasthan, India, where BioEnsure® was applied to pearl millet and mung bean seeds for 400 small landholding farmers. Under the hot, dry growing conditions that are typical in this part of India, the resulting average yield increases were 29% and 56%, respectively, compared to untreated plants. This translated to improved food security, animal fodder, carry-over seed, and revenues. Interest in the USA is growing with BioEnsure® treated seeds planted in 300,000 acres in 2017 and 600,000 acres in 2018, and more than 2,000,000 acres are projected for 2019.

Keywords

Climate mitigation Food security Endophyte commercialization Crop production Symbiotic lifestyles 

References

  1. Alvarez-Loayza P, White JF Jr, Torres MS, Gil N, Svenning J-C, Balslev H, Kristiansen T (2011) Light converts endosybiotic fungus to pathogen, influencing seedling survival and recruitment of host. PLoS One 6(1):e16386CrossRefGoogle Scholar
  2. Brinkman H-J, Hendrix CS (2011) Food insecurity and violent conflict: causes, consequences, and addressing the challenges. https://ucanr.edu/blogs/food2025/blogfiles/14415.pdf
  3. Chaw S, Chang C, Chen H, Li W (2004) Dating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genomes. J Mol Evol 58:424–441CrossRefGoogle Scholar
  4. Deaton BJ, Lipka B (2015) Political instability and food security. J Food Sec 3:29–33CrossRefGoogle Scholar
  5. Gurian-Sherman D (2012) High and dry: why genetic engineering is not solving agriculture’s drought problem in a thirsty world. Union of Concerned Scientists. www.ucsusa.org/sites/default/files/legacy/assets/documents/food_and_agriculture/high-and-dry-report.pdf
  6. Komives T, Kirlay Z (2017) From golden rice to drought-tolerant maize and new techniques to control plant disease – can we expect a breakthrough in crop production. Ecocycles 3:1–5CrossRefGoogle Scholar
  7. Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ (2007) Fungal endophytes in a 400 million-yr-old land plant: infection pathways, spatial distribution and host responses. New Phytol 174:648–657CrossRefGoogle Scholar
  8. Lofgren LA, LeBlanc NR, Certano AK, Nachtigall J, LaBine KM, Riddle J, Broz K, Dong Y, Bethan B, Kafer CW, Corby KH (2018) Fusarium graminearum: pathogen or endophyte of North American grasses? New Phytol 217(3):1203–1212CrossRefGoogle Scholar
  9. Lugtenberg BJJ, Caradus JR, Johnson LJ (2016) Fungal endophytes for sustainable crop production. FEMS Microbiol Ecol 92:1–17CrossRefGoogle Scholar
  10. Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515CrossRefGoogle Scholar
  11. Nuccioa ML, Paulb M, Batea NJ, Cohna J, Cutlerc SR (2018) Where are the drought tolerant crops? An assessment of more than two decades of plant biotechnology effort in crop improvement. Plant Sci 273:110–119CrossRefGoogle Scholar
  12. Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921CrossRefGoogle Scholar
  13. Redman RS, Rodriguez RJ (2017) The symbiogenic Tango: achieving climate resilient crops via mutualistic plant-fungal relationships. In: Doty SL (ed) Functional importance of the plant endophytic microbiome: implications for agriculture, forestry and bioenergy. Springer, Cham, pp 71–88CrossRefGoogle Scholar
  14. Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis: from mutualism to parasitism, who controls the outcome, host or invader? New Phytol 151:705–716CrossRefGoogle Scholar
  15. Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581CrossRefGoogle Scholar
  16. Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim Y, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME-Nat 2:404–416CrossRefGoogle Scholar
  17. Rodriguez RJ, White JFJ, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. Tansley review. New Phytol 182:314–330CrossRefGoogle Scholar
  18. Simmons E (2017) Recurring storms: food insecurity, political instability, and conflict. www.csis.org/analysis/recurring-storms-food-insecurity-political-instability-and-conflict
  19. Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6(2):175–191CrossRefGoogle Scholar
  20. Skøt J, Lipper L, Thomas G, Agostini A, Bertini R, De Young C, Lowder S, Meybeck A, Mottet A, Ramasamy S, Rose S, Steinfeld H (2016) http://www.fao.org/3/a-i6030e.pdf
  21. Wolfe KH, Gouy M, Yang Y, Sharp PM, Li W (1989) Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci USA 86:6201–6205CrossRefGoogle Scholar
  22. Yang YW, Lai KN, Tai PY, Li WH (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol 48:597–604CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rusty Rodriguez
    • 1
    • 2
    • 3
    Email author
  • Alec Baird
    • 4
  • Sang Cho
    • 1
  • Zachery Gray
    • 1
  • Evan Groover
    • 5
  • Roman Harto
    • 1
  • Marian Hsieh
    • 1
  • Katie Malmberg
    • 1
  • Ryan Manglona
    • 1
  • Malia Mercer
    • 1
  • Natalie Nasman
    • 1
  • Tia Nicklason
    • 1
  • Melissa Rienstra
    • 1
  • Alex Van Inwegen
    • 1
  • Andy VanHooser
    • 1
  • Regina Redman
    • 1
    • 2
  1. 1.Adaptive Symbiotic TechnologiesSeattleUSA
  2. 2.SymbiogenicsSeattleUSA
  3. 3.University of WashingtonSeattleUSA
  4. 4.University of CaliforniaLos AngelesUSA
  5. 5.University of CaliforniaBerkeleyUSA

Personalised recommendations