Advertisement

The Ecology of Seed Microbiota

  • Pablo Hardoim
Chapter

Abstract

Plants evolved in the presence of microbes, and key functions for the success of these organisms on Earth are attributed to symbionts as source of origin. Therefore, it is not surprising that plants can establish intimate interactions with mutualistic microbes. Beneficial microbial traits might be selected by the host plants to improve their own fitness, and some of these beneficial microbes might even be vertically transmitted via seeds over plant generations, as persistent microbes. However, some seed-borne microbes might be transient and originated from horizontal transmission. In this study, I summarize the results from the literature regarding the diversity of seed-inhabiting microbes, how environmental and host factors might affect seed microbial assembly and structure, and the putative mutualistic functions of microbes might have during seedling establishment. Because deterministic (i.e., niche theory) and stochastic (i.e., neutral theory) processes are likely to contribute to seed microbiota assembly and structure, seed microbial ecology represents an exciting model to investigate fundamental aspects of ecology.

Keywords

Seed endophytes Seed microbial assembly Seed microbial structure Seed microbial functions Niche theory Neutral theory Seed holobiome 

Notes

Conflict of Interest

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll A (2013) ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front Plant Sci 4:63.  https://doi.org/10.3389/fpls.2013.00063CrossRefPubMedPubMedCentralGoogle Scholar
  2. Assumpção LDC, Lacava PT, Dias AC, de Azevedo JL, Menten JOM (2009) Diversity and biotechnological potential of endophytic bacterial community of soybean seeds. Pesq Agrop Bras 44:503–510CrossRefGoogle Scholar
  3. Bagchi R, Gallery RE, Gripenberg S et al (2014) Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506:85–88PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488PubMedCrossRefPubMedCentralGoogle Scholar
  5. Barret M, Briand M, Bonneau S et al (2015) Emergence shapes the structure of the seed-microbiota. Appl Environ Microbiol 81:1257–1266PubMedPubMedCentralCrossRefGoogle Scholar
  6. Barrow JR, Osuna P (2002) Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt. J Arid Environ 51:449–459CrossRefGoogle Scholar
  7. Bastias DA, Martínez-Ghersa MA, Ballaré CL, Gundel PE (2017) Epichloë fungal endophytes and plant defenses: not just alkaloids. Trends Plant Sci 22:939–948PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bell T, Freckleton RP, Lewis OT (2006) Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecol Lett 9:569–574PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bidartondo MI, Read DJ, Trappe JM, Merckx V, Ligrone R, Duckett JG (2011) The dawn of symbiosis between plants and fungi. Biol Lett 7:574–577.  https://doi.org/10.1098/rsbl.2010.1203
  10. Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838CrossRefGoogle Scholar
  11. Chimwamurombe PM, Grönemeyer JL, Reinhold-Hurek B (2016) Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiol Ecol 92:1–11CrossRefGoogle Scholar
  12. Clay K (1987) Effects of fungal endophytes on the seed and seedling biology of Lolium perenne and Festuca arundinacea. Oecologia 73:358–362PubMedCrossRefPubMedCentralGoogle Scholar
  13. Clay K (1990) Fungal endophytes of grasses. Annu Rev Ecol Syst 21:275–297CrossRefGoogle Scholar
  14. Compant S, Kaplan H, Sessitsch A, Nowak J, Ait Barka E, Clément C (2008) Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol 63:84–93PubMedCrossRefPubMedCentralGoogle Scholar
  15. Cope-Selby N, Cookson A, Squance M, Donnison I, Flavell R, Farrar K (2017) Endophytic bacteria in Miscanthus seed: implications for germination, vertical inheritance of endophytes, plant evolution and breeding. GCB Bioenergy 9:57–77CrossRefGoogle Scholar
  16. Crocker EV, Karp MA, Nelson EB (2015) Virulence of oomycete pathogens from Phragmites australis invaded and noninvaded soils to seedlings of wetland plant species. Ecol Evol 5:2127–2139PubMedPubMedCentralCrossRefGoogle Scholar
  17. Darsonval A, Darrasse A, Durand K, Bureau C, Cesbron S, Jacques MA (2009) Adhesion and fitness in the bean phyllosphere and transmission to seed of Xanthomonas fuscans subsp. fuscans. Mol Plant Microbe Interact 22:747–757PubMedCrossRefPubMedCentralGoogle Scholar
  18. Díaz Herrera S, Grossi C, Zawoznik M, Groppa MD (2016) Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiol Res 186–187:37–43PubMedCrossRefPubMedCentralGoogle Scholar
  19. Drakakaki G, Marcel S, Glahn RP (2005) Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol Biol 59:869–880PubMedCrossRefPubMedCentralGoogle Scholar
  20. Etesami H, Alikhani HA (2016) Suppression of the fungal pathogen Magnaporthe grisea by Stenotrophomonas maltophilia, a seed-borne rice (Oryza sativa L.) endophytic bacterium. Arch Agron Soil Sci 62:1271–1284CrossRefGoogle Scholar
  21. Ewald PW (1987) Transmission modes and evolution of the parasitism-mutualism continuum. Ann NY Acad Sci 503:295–306PubMedCrossRefPubMedCentralGoogle Scholar
  22. Fenner M (2000) Seeds: the ecology of regeneration in plant communities. CABI, OxonCrossRefGoogle Scholar
  23. Gao T, Shi X (2018) Preparation of a synthetic seed for the common reed harboring an endophytic bacterium promoting seedling growth under cadmium stress. Environ Sci Pollut Res 25:8871–8879CrossRefGoogle Scholar
  24. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39CrossRefGoogle Scholar
  25. Goggin DE, Emery RJN, Kurepin LV, Powles SB (2015) A potential role for endogenous microflora in dormancy release, cytokinin metabolism and the response to fluridone in Lolium rigidum seeds. Ann Bot 115:293–301PubMedCrossRefPubMedCentralGoogle Scholar
  26. Hameed A, Yeh MW, Hsieh YT, Chung WC, Lo CT, Young LS (2015) Diversity and functional characterization of bacterial endophytes dwelling in various rice (Oryza sativa L.) tissues, and their seed-borne dissemination into rhizosphere under gnotobiotic P-stress. Plant Soil 394:177–197CrossRefGoogle Scholar
  27. Hardoim PR, Hardoim CCP, van Overbeek LS, van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7:e30438PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hardoim PR, van Overbeek LS, Berg G et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hodgson S, de Cates C, Hodgson J, Morley NJ, Sutton BC, Gange AC (2014) Vertical transmission of fungal endophytes is widespread in forbs. Ecol Evol 4:1199–1208PubMedPubMedCentralCrossRefGoogle Scholar
  30. Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6:e20396.  https://doi.org/10.1371/journal.pone.0020396CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kämpfer P, Glaeser SP, Mcinroy JA, Busse HJ (2014) Cohnella rhizosphaerae sp. nov., isolated from the rhizosphere environment of Zea mays. Int J Syst Evol Microbiol 64:1811–1816PubMedCrossRefPubMedCentralGoogle Scholar
  32. Katznelson H, Peterson EA, Rouatt JW (1962) Phosphate-dissolving microorganisms on seed and in the root zone of plants. Can J Bot 40:1181–1186CrossRefGoogle Scholar
  33. Khalaf EM, Raizada MN (2016) Taxonomic and functional diversity of cultured seed associated microbes of the cucurbit family. BMC Microbiol 16:131PubMedPubMedCentralCrossRefGoogle Scholar
  34. Kovačec E, Likar M, Regvar M (2016) Temporal changes in fungal communities from buckwheat seeds and their effects on seed germination and seedling secondary metabolism. Fungal Biol 120:666–678PubMedCrossRefPubMedCentralGoogle Scholar
  35. Kristin A, Miranda H (2013) The root microbiota: a fingerprint in the soil? Plant Soil 370:671–686CrossRefGoogle Scholar
  36. Kuldau G, Bacon C (2008) Clavicipitaceous endophytes: their ability to enhance resistance of grasses to multiple stresses. Biol Control 46:57–71CrossRefGoogle Scholar
  37. Leuchtmann A, Schmidt D, Bush LP (2000) Different levels of protective alkaloids in grasses with stroma-forming and seed-transmitted Epichloë/Neotyphodium endophytes. J Chem Ecol 26:1025–1036CrossRefGoogle Scholar
  38. Lidstrom ME, Chistoserdova L (2002) Plants in the pink: cytokinin production by Methylobacterium. J Bacteriol 184:1818–1818PubMedPubMedCentralCrossRefGoogle Scholar
  39. Liu CY, Zhang F, Zhang DJ, Srivastava AK, Wu QS, Zou YN (2018) Mycorrhiza stimulates root-hair growth and IAA synthesis and transport in trifoliate orange under drought stress. Sci Rep 8:1978PubMedPubMedCentralCrossRefGoogle Scholar
  40. López JL, Alvarez F, Principe A et al (2018) Isolation, taxonomic analysis, and phenotypic characterization of bacterial endophytes present in alfalfa (Medicago sativa) seeds. J Biotechnol 267:55–62PubMedCrossRefPubMedCentralGoogle Scholar
  41. López-López A, Rogel MA, Ormeño-Orrillo E, Martínez-Romero J, Martínez-Romero E (2010) Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst Appl Microbiol 33:322–327PubMedCrossRefPubMedCentralGoogle Scholar
  42. Mahmood A, Turgay OC, Farooq M, Hayat R (2016) Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol 92:fiw112PubMedCrossRefPubMedCentralGoogle Scholar
  43. Mangan SA, Schnitzer SA, Herre EA et al (2010) Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466:752–755PubMedCrossRefPubMedCentralGoogle Scholar
  44. Mastretta C, S Taghavi S, van der Lelie D (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediation 11:251–267CrossRefGoogle Scholar
  45. Mitter B, Pfaffenbichler N, Flavell R et al (2018) A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front Microbiol 8:11.  https://doi.org/10.3389/fmicb.2017.00011CrossRefGoogle Scholar
  46. Mundt JO, Hinkle NF (1976) Bacteria within ovules and seeds. Appl Environ Microbiol 32:694–698PubMedPubMedCentralGoogle Scholar
  47. Munkvold GP (2009) Seed pathology progress in academia and industry. Annu Rev Phytopathol 47:285–311PubMedCrossRefPubMedCentralGoogle Scholar
  48. Nelson EB (2004) Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol 42:271–309PubMedCrossRefPubMedCentralGoogle Scholar
  49. Nelson EB (2018) The seed microbiome: origins, interactions, and impacts. Plant Soil 422:7–34CrossRefGoogle Scholar
  50. Ngugi HK, Scherm H (2006) Biology of flower-infecting fungi. Annu Rev Phytopathol 44:261–282PubMedCrossRefPubMedCentralGoogle Scholar
  51. Nuclo RL, Johnson KB, Stockwell VO, Sugar D (1998) Secondary colonization of pear blossoms by two bacterial antagonists of the fire blight pathogen. Plant Dis 82:661–668PubMedCrossRefPubMedCentralGoogle Scholar
  52. Paparella S, Araújo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34:1281–1293CrossRefGoogle Scholar
  53. Penrose DM, Moffatt BA, Glick BR (2001) Determination of 1-aminocycopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Can J Microbiol 47:77–80PubMedCrossRefPubMedCentralGoogle Scholar
  54. Petrini O (1986) Taxonomy of endophytic fungi of aerial plant tissues. In: Fokkema NJ, van den Heuvel J (eds) Microbiology of the phyllosphere, Cambridge University Press, CambridgeGoogle Scholar
  55. Puente ME, Li CY, Bashan Y (2009) Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ Exp Bot 66:402–408CrossRefGoogle Scholar
  56. Ralphs MH, Cook D, Gardner DR, Grum DS (2011) Transmission of the locoweed endophyte to the next generation of plants. Fungal Ecol 4:251–255CrossRefGoogle Scholar
  57. Rezki S, Campion C, Simoneau P, Jacques MA, Shade A, Barret M (2018) Assembly of seed-associated microbial communities within and across successive plant generations. Plant Soil 422:67–79CrossRefGoogle Scholar
  58. Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Funct Plant Biol 28:897–906CrossRefGoogle Scholar
  59. Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330PubMedCrossRefPubMedCentralGoogle Scholar
  60. Rosenblueth M, López-López A, Martínez J, Rogel MA, Toledo I, Martínez-Romero E (2012) Seed bacterial endophytes: common genera, seed-to-seed variability and their possible role in plants. Acta Hortic 938:39–48CrossRefGoogle Scholar
  61. Samish Z, Etinger-Tulczynska R, Bick M (1961) Microflora within healthy tomatoes. Appl Microbiol 9:20–25PubMedPubMedCentralGoogle Scholar
  62. Sánchez-López A, Pintelon I, Stevens V et al (2018) Seed endophyte microbiome of Crotalaria pumila unpeeled: identification of plant-beneficial methylobacteria. Int J Mol Sci 19:291PubMedCentralCrossRefGoogle Scholar
  63. Sapp J (2004) The dynamics of symbiosis: an historical overview. Can J Bot 82:1046–1056CrossRefGoogle Scholar
  64. Schaller GE, Bishopp A, Kieber JJ (2015) The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell 27:44–63.  https://doi.org/10.1105/tpc.114.133595CrossRefPubMedPubMedCentralGoogle Scholar
  65. Schnathorst WC (1954) Bacteria and fungi in seed and plants of certified bean varieties. Phytopathology 44:588–592Google Scholar
  66. Shade A, McManus PS, Handelsman J (2013) Unexpected diversity during community succession in the apple flower microbiome mBio 4:e00602–e00612Google Scholar
  67. Shade A, Jacques MA, Barret M (2017) Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr Opin Microbiol 37:15–22PubMedCrossRefPubMedCentralGoogle Scholar
  68. Shahzad R, Khan AL, Bilal S, Asaf S, Lee IJ (2018) What is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Front Plant Sci 9:24PubMedPubMedCentralCrossRefGoogle Scholar
  69. Shahzada R, Waqasab M, Khan AL (2017) Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol Biochem 106:236–243CrossRefGoogle Scholar
  70. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587PubMedPubMedCentralCrossRefGoogle Scholar
  71. Shipunov A, Newcombe G, Raghavendra AKH, Anderson CL (2008) Hidden diversity of endophytic fungi in an invasive plant. Am J Bot 95:1096–1108PubMedCrossRefPubMedCentralGoogle Scholar
  72. Singh B, Satyanarayana T (2011) Microbial phytases in phosphorus acquisition and plant growth promotion. Physiol Mol Biol Plants 17:93–103PubMedPubMedCentralCrossRefGoogle Scholar
  73. Siqueira JA, Hardoim P, Ferreira PCG, Nunes-Nesi A, Hemerly AS (2018) Unraveling interfaces between energy metabolism and cell cycle in plants. Trends Plant Sci 23:731–747PubMedCrossRefPubMedCentralGoogle Scholar
  74. Spatafora JW, Sung GH, Sung JM, Hywel-Jones NL, White JF Jr (2007) Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol Ecol 16:1701–1711PubMedCrossRefPubMedCentralGoogle Scholar
  75. Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296:131–136PubMedCrossRefPubMedCentralGoogle Scholar
  76. Tadych M, Torres MS, White JF Jr (2009) Diversity and ecological roles of clavicipitaceous endophytes of grasses. In: White JF Jr, Torres MS (eds) Defensive mutualism in microbial symbiosis. CRC Press, Boca RatonGoogle Scholar
  77. Tancos MA, Chalupowicz L, Barash I, Manulis-Sasson S, Smart CD (2013) Tomato fruit and seed colonization by Clavibacter michiganensis subsp. michiganensis through external and internal routes. Appl Env Microbiol 79(22):6948–6957CrossRefGoogle Scholar
  78. Tchinda RAM, Boudjeko T, Simao-Beaunoir AM, Lerat S, Tsala E, Monga E, Beaulieu C (2016) Morphological, physiological, and taxonomic characterization of actinobacterial isolates living as endophytes of cacao pods and cacao seeds. Microbes Environ 31:56–62PubMedPubMedCentralCrossRefGoogle Scholar
  79. Thomas P, Sekhar AC (2014) Live cell imaging reveals extensive intracellular cytoplasmic colonization of banana by normally non-cultivable endophytic bacteria. AoB Plants 6.  https://doi.org/10.1093/aobpla/plu002
  80. Truyens S, Weyens N, Cuypers A, Vangronsveld J (2013) Changes in the population of seed bacteria of transgenerationally Cd-exposed Arabidopsis thaliana. Plant Biol 15:971–981PubMedCrossRefPubMedCentralGoogle Scholar
  81. Truyens S, Jambon I, Croes S et al (2014) The effect of long-term Cd and Ni exposure on seed endophytes of Agrostis capillaris and their potential application in phytoremediation of metal-contaminated soils. Int J Phytoremediation 16:643–659PubMedCrossRefPubMedCentralGoogle Scholar
  82. Truyens S, Beckers B, Thijs S, Weyens N, Cuypers A, Vangronsveld J (2016) Cadmium-induced and trans-generational changes in the cultivable and total seed endophytic community of Arabidopsis thaliana. Plant Biol 18:376–381PubMedCrossRefPubMedCentralGoogle Scholar
  83. Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126CrossRefGoogle Scholar
  84. Tsavkelova EA, Cherdyntseva TA, Klimova SY, Shestakov AI, Botina SG, Netrusov AI (2007) Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin. Arch Microbiol 188:655–664PubMedCrossRefPubMedCentralGoogle Scholar
  85. Vannette RL, Gauthier MPL, Fukami T (2013) Nectar bacteria, but not yeast, weaken a plant–pollinator mutualism. Proc R Soc Lond B Biol Sci 280:20122601CrossRefGoogle Scholar
  86. Vellend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 85:183–206PubMedCrossRefPubMedCentralGoogle Scholar
  87. Verma SK, White JF Jr (2018) Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.). J Appl Microbiol 124:764–778PubMedCrossRefPubMedCentralGoogle Scholar
  88. Verma SK, Kingsley K, Irizarry I, Bergen M, Kharwar RN, White JF Jr (2017) Seed-vectored endophytic bacteria modulate development of rice seedlings. J Appl Microbiol 122:1680–1691PubMedCrossRefPubMedCentralGoogle Scholar
  89. Walitang DI, Kim K, Madhaiyan M, Kim YK, Kang Y, Sa T (2017) Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice. BMC Microbiol 17:209PubMedPubMedCentralCrossRefGoogle Scholar
  90. Wang Y, Li L, Ye T et al (2011) Cytokinin antagonizes ABA suppression to seed germination of Arabidopsis by downregulating ABI5 expression. Plant J 68:249–261PubMedCrossRefPubMedCentralGoogle Scholar
  91. Wilson M, Lindow SE (1993) Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms. Phytopathology 83:117–123CrossRefGoogle Scholar
  92. Xu C, Liberatore KL, MacAlister CA et al (2015) A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat Genet 47:784–792PubMedCrossRefPubMedCentralGoogle Scholar
  93. Zalamea PC, Sarmiento C, Arnold AE, Davis AS, Dalling JW (2015) Do soil microbes and abrasion by soil particles influence persistence and loss of physical dormancy in seeds of tropical pioneers? Front Plant Sci 5:799.  https://doi.org/10.3389/fpls.2014.00799CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pablo Hardoim
    • 1
  1. 1.Biopromo Agriculture Consulting BusinessPraia GrandeBrazil

Personalised recommendations