Advertisement

Endophytic Microbes: Prospects and Their Application in Abiotic Stress Management and Phytoremediation

  • Divya Singh
  • Vipin Kumar Singh
  • Amit Kishore Singh
Chapter

Abstract

Environmental stresses such as drought, salinity, and heavy metals are the major limiting factors associated with plants, causing collectively more than 50% yield losses worldwide. These unavoidable stresses impair life-sustaining normal physiological and biochemical processes of plants by disrupting the plant-water relationships, generation of reactive oxygen species (ROS), and ion toxicity inside plant cells. Consequently, reduced photosynthetic activity, abrupt changes in vital physiological processes, and degradation of cellular biomolecules lead to reduced crop productivity. Past decade researches have indicated that the microbes play key role in abiotic stress management due to their ubiquitous nature, colonization activity, unique physiology, production of useful secondary metabolites (antimicrobial compounds, VOCs), and most importantly, their application in sustainable agriculture. Furthermore, present-day scientists consider the endophyte-plant partnerships to be more appealing and advantageous as compared to rhizospheric microbes because of their intimate association with host-cell environment that provide the plant’s ability to circumvent various biotic as well as abiotic stresses. Therefore, present chapter endeavors to review the dynamic role of endophytes in abiotic stress management and their possible application in environmental cleanup for sustainable environment development.

Keywords

Endophytes Abiotic stress Reactive oxygen species Phytoremediation Secondary metabolite Bioaccumulation 

Notes

Acknowledgment

Authors are greatly thankful to the Head of Department of Botany, Banaras Hindu University, Varanasi, for providing central lab facility and to UGC and CSIR, New Delhi, for financial assistance in form of JRF and SRF.

References

  1. Abdelaziz ME, Kim D, Ali S, Fedoroff NV, Al-Babili S (2017) The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K + homeostasis under salt stress conditions. Plant Sci 263:107–115PubMedCrossRefPubMedCentralGoogle Scholar
  2. Afzal M, Yousaf S, Reichenauer TG, Kuffner M, Sessitsch A (2011) Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. J Hazard Mater 186:1568–1575PubMedCrossRefPubMedCentralGoogle Scholar
  3. Afzal M, Yousaf S, Reichenauer TG, Sessitsch A (2012) The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int J Phytoremediation 14:35–47PubMedCrossRefPubMedCentralGoogle Scholar
  4. Andreolli M, Lampis S, Poli M, Gullner G, Biró B, Vallini G (2013) Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons. Chemosphere 92:688–694PubMedCrossRefPubMedCentralGoogle Scholar
  5. Andria V, Reichenauer TG, Sessitsch A (2009) Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil. Environ Pollut 157:3347–3350PubMedCrossRefPubMedCentralGoogle Scholar
  6. Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. J Environ Manag 151:160–166CrossRefGoogle Scholar
  7. Bacon C, Hinton D (2006) Bacterial endophytes: the endophytic niche, its occupants, and its utility. In: Gnanamanickam S (ed) Plant-associated bacteria. Springer, Dordrecht, pp 155–194CrossRefGoogle Scholar
  8. Bacon CW, White J (eds) (2000) Microbial endophytes. CRC Press, Boca RatonGoogle Scholar
  9. Bae H, Sicher RC, Kim M, Kim SH, Strem MD, Melnick RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60(11):3279–3295PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bailey-Serres J, Voesenek LA (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339Google Scholar
  11. Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, Van Der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583Google Scholar
  12. Barnawal D, Bharati N, Tripathi A, Pandey SS, Chanotiya CS, Kalra A (2016) ACC-Deaminase-producing endophyte Brachybacterium paraconglomeratum strain SMR20 ameliorates Chlorophytum salinity stress via altering phytohormone generation. J Plant Growth Regul 35:553–564CrossRefGoogle Scholar
  13. Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53:306–316PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bates BC, Kundzewicz ZW, Palutikof J, Wu S (2008) Climate change and water, technical paper of the intergovernmental panel on climate change 2008. IPCC Secretariat 210, GenevaGoogle Scholar
  15. Chen C, Xin K, Liu H, Cheng J, Shen X, Wang Y, Zhang L (2017) Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci Rep 7:41564PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cocq KL, Gurr SJ, Hirsch PR, Mauchline TH (2017) Exploitation of endophytes for sustainable agricultural intensification. Mol Plant Pathol 18:469–473PubMedCrossRefPubMedCentralGoogle Scholar
  17. Etesami H, Beattie GA (2017) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Probiotics and plant health. Springer, Singapore, pp 163–200CrossRefGoogle Scholar
  18. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Mado LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194PubMedCrossRefPubMedCentralGoogle Scholar
  19. Gagné-Bourque F, Mayer BF, Charron J-B, Vali H, Bertrand A, Jabaji S (2015) Accelerated growth rate and increased drought stress resilience of the model grass Brachypodium distachyon colonized by Bacillus subtilis B26. PLoS One 10(6):e0130456PubMedPubMedCentralCrossRefGoogle Scholar
  20. Gagné-Bourque F, Bertrand A, Claessens A, Aliferis KA, Jabaji S (2016) Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis B26. Front Plant Sci 7:584PubMedPubMedCentralCrossRefGoogle Scholar
  21. Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30CrossRefGoogle Scholar
  22. Germaine KJ, Liu X, Cabellos GG, Hogan JP, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2, 4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310PubMedCrossRefPubMedCentralGoogle Scholar
  23. Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296:226–234PubMedCrossRefPubMedCentralGoogle Scholar
  24. Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils. Soil Biol Biochem 30:1389–1414CrossRefGoogle Scholar
  25. Guo HJ, Luo SL, Chen L, Xiao X, Xi Q, Wei WZ, Zeng G, Liu C, Wan Y, Chen J, He Y (2010) Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium Bacillus sp. L14. Bioresour Technol 101:8599–6605PubMedCrossRefPubMedCentralGoogle Scholar
  26. Guo H, Yao J, Cai M, Qian Y, Guo Y, Richnow HH, Blake RE, Doni S, Ceccanti B (2012) Effects of petroleum contamination on soil microbial numbers, metabolic activity and urease activity. Chemosphere 87:1273–1280PubMedCrossRefPubMedCentralGoogle Scholar
  27. Hamilton CE, Bauerle TL (2012) A new currency for mutualism: Neotyphodium antioxidants and host drought response. Fungal Divers 54:39–49CrossRefGoogle Scholar
  28. Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54:1–10CrossRefGoogle Scholar
  29. Hasegawa S, Meguro A, Nishimura T, Kunoh H (2004) Drought tolerance of tissue-cultured seedlings of mountain laurel (Kalmia latifolia L.) induced by an endophytic actinomycete I. Enhancement of osmotic pressure in leaf cells. Actinomycetologica 18(2):43–47CrossRefGoogle Scholar
  30. Havelcová M, Melegy A, Rapant S (2014) Geochemical distribution of polycyclic aromatic hydrocarbons in soils and sediments of El-Tabbin, Egypt. Chemosphere 95:63–74PubMedCrossRefPubMedCentralGoogle Scholar
  31. Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387PubMedCrossRefPubMedCentralGoogle Scholar
  32. Ho YN, Mathew DC, Hsiao SC, Shih CH, Chien MF, Chiang HM, Huang CC (2012) Selection and application of endophytic bacterium Achromobacter xylosoxidans strain F3B for improving phytoremediation of phenolic pollutants. J Hazard Mater 219:43–49PubMedCrossRefPubMedCentralGoogle Scholar
  33. Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677PubMedPubMedCentralCrossRefGoogle Scholar
  34. Jaemsaeng R, Jantasuriyarat C, Thamchaipenet A (2018) Molecular interaction of 1-aminocyclopropane-1-carboxylate deaminase (ACCD)-producing endophytic Streptomyces sp. GMKU 336 towards salt-stress resistance of Oryza sativa L. cv. KDML105. Sci Rep 8:1950PubMedPubMedCentralCrossRefGoogle Scholar
  35. Jha Y, Subramanian RB (2011) Endophytic Pseudomonas pseudoalcaligenes shows better response against the Magnaporthe grisea than a rhizospheric Bacillus pumilus in Oryza sativa (Rice). Arch Phytopathol Plant Protect 44:592–604CrossRefGoogle Scholar
  36. Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802CrossRefGoogle Scholar
  37. Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 149–162CrossRefGoogle Scholar
  38. Jogawat A, Saha S, Bakshi M, Dayaman V, Kumar M, Dua M, Varma A, Oelmüller R, Tuteja N, Johri AK (2013) Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signal Behav 8(10):e26891PubMedCentralCrossRefGoogle Scholar
  39. Kamnev AA, Tugarova AV, Antonyuk LP, Tarantilis PA, Polissiou MG, Gardiner PH (2005) Effects of heavy metals on plant-associated rhizobacteria: comparison of endophytic and non-endophytic strains of Azospirillum brasilense. J Trace Elem Med Biol 9:91–95CrossRefGoogle Scholar
  40. Kang JW, Khan Z, Doty SL (2012) Biodegradation of trichloroethylene by an endophyte of hybrid poplar. Appl Environ Microbiol 12:3504–3507CrossRefGoogle Scholar
  41. Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M, Strauss J, Rivelli AR, Sessitsch A (2010) Culturable bacteria from Zn-and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J Appl Microbiol 108:1471–1484PubMedCrossRefPubMedCentralGoogle Scholar
  43. Lamichhane JR, Venturi V (2015) Synergisms between plant disease complexes: a growing trend. Front Plant Sci 6:385PubMedPubMedCentralCrossRefGoogle Scholar
  44. Lata R, Choudhury S, Gond SK, White JF Jr (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66:268–276CrossRefGoogle Scholar
  45. Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606CrossRefGoogle Scholar
  46. Luo SL, Wan Y, Xiao X, Guo H, Chen L, Xi Q, Zeng G, Liu C, Chen J (2011) Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation. Appl Microbiol Biotechnol 89:1637–1644PubMedCrossRefPubMedCentralGoogle Scholar
  47. Ma Y, Rajkumar M, Luo Y, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants—effects on plant growth and Ni uptake. J Hazard Mater 195:230–237PubMedCrossRefPubMedCentralGoogle Scholar
  48. MacKinnon G, Duncan HJ (2013) Phytotoxicity of branched cyclohexanes found in the volatile fraction of diesel fuel on germination of selected grass species. Chemosphere 90:952–957PubMedCrossRefPubMedCentralGoogle Scholar
  49. Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228CrossRefPubMedGoogle Scholar
  50. Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–262PubMedCrossRefPubMedCentralGoogle Scholar
  51. Mastretta C, Taghavi S, Van Der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediation 11:251–267CrossRefGoogle Scholar
  52. Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172PubMedPubMedCentralCrossRefGoogle Scholar
  53. Moore FP, Barac T, Borremans B, Oeyen L, Vangronsveld J, Lelie D, Campbell CD, Moore ER (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterization of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556PubMedCrossRefPubMedCentralGoogle Scholar
  54. Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. Hindawi Publishing Corporation. Sci World J. Article ID 250693Google Scholar
  55. Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131CrossRefGoogle Scholar
  56. Naya L, Ladrera R, Ramos J, González EM, Arrese-Igor C, Minchin FR, Becana M (2007) The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol 144(2):1104–1114PubMedPubMedCentralCrossRefGoogle Scholar
  57. Pandey V, Ansari MW, Tula S, Yadav S, Sahoo RK, Shukla N, Bains G, Badal S, Chandra S, Gaur AK, Kumar A (2016) Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes. Planta 243:1251–1264PubMedCrossRefPubMedCentralGoogle Scholar
  58. Pitman MG, Lauchli A (2002) Global impact of salinity and agricultural ecosystems. In: Lauchli A, Luttge V (eds) Salinity: environment-plants molecules. Kluwer, Dordrecht, pp 3–20Google Scholar
  59. Quadt-Hallmann A, Benhamou N, Kloepper JW (1997) Bacterial endophytes in cotton: mechanisms of entering the plant. Can J Microbiol 43:577–582CrossRefGoogle Scholar
  60. Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160PubMedCrossRefPubMedCentralGoogle Scholar
  61. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149PubMedCrossRefPubMedCentralGoogle Scholar
  62. Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6(4):139–144PubMedCrossRefPubMedCentralGoogle Scholar
  63. Reyad AMM, Radwan TEE, Hemida KA, Al-Qasee NAA, Ali RA (2017) Salt tolerant endophytic bacteria from carthamus tinctorius and their role in plant salt tolerance improvement. Int J Curr Sci Res 3:1467–1488Google Scholar
  64. Rouhier N, San Koh C, Gelhaye E, Corbier C, Favier F, Didierjean C, Jacquot JP (2008) Redox based antioxidant systems in plants: biochemical and structural analyses. Biochim Biophys Acta 1780:1249–1260PubMedCrossRefPubMedCentralGoogle Scholar
  65. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  66. Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249PubMedCrossRefPubMedCentralGoogle Scholar
  67. Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel W, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194PubMedPubMedCentralCrossRefGoogle Scholar
  68. Shehzadi M, Afzal M, Islam E, Mobin A, Anwar S, Khan QM (2014) Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria. Wat Res 58:152–159CrossRefGoogle Scholar
  69. Sheng X, Chen X, He L (2008a) Characteristics of an endophytic pyrene-degrading bacterium of Enterobacter sp. 12J1 from Allium macrostemon Bunge. Int Biodeter Biodegr 62:88–95CrossRefGoogle Scholar
  70. Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008b) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170PubMedCrossRefPubMedCentralGoogle Scholar
  71. Shin MN, Shim J, You Y, Myung H, Bang KS, Cho M, Kamala-Kannan S, Oh BT (2012) Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. J Hazard Mater 199:314–320Google Scholar
  72. Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Ouellette D, Roy R, Whyte LG, Banks MK, Schwab P, Lee K, Greer CW (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475PubMedPubMedCentralCrossRefGoogle Scholar
  73. Singh D, Roy BK (2016) Salt stress affects mitotic activity and modulates antioxidant systems in onion roots. Braz J Bot 39:67–76CrossRefGoogle Scholar
  74. Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009–1017PubMedCrossRefPubMedCentralGoogle Scholar
  75. Sun JL, Zeng H, Ni HG (2013) Halogenated polycyclic aromatic hydrocarbons in the environment. Chemosphere 90:1751–1759PubMedCrossRefPubMedCentralGoogle Scholar
  76. Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505PubMedPubMedCentralCrossRefGoogle Scholar
  77. Taghavi S, Weyens N, Vangronsveld J, van der Lelie D (2011) Improved phytoremediation of organic contaminants through engineering of bacterial endophytes of trees. In: Pirttilä AM, Frank AC (eds) Endophytes of forest trees. Springer, Netherlands, pp 205–216Google Scholar
  78. Vargas L, Santa Brígida AB, Mota Filho JP, de Carvalho TG, Rojas CA, Vaneechoutte D, Van Bel M, Farrinelli L, Ferreira PC, Vandepoele K, Hemerly AS (2014) Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways. PLoS One 9(12):e114744PubMedPubMedCentralCrossRefGoogle Scholar
  79. Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291PubMedCrossRefPubMedCentralGoogle Scholar
  80. Vurukonda SSKP, Vardharajula S, Shrivastava M, Skz A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24PubMedCrossRefPubMedCentralGoogle Scholar
  81. Wang Y, Li H, Zhao W, He X, Chen J, Geng X, Xiao M (2010) Induction of toluene degradation and growth promotion in corn and wheat by horizontal gene transfer within endophytic bacteria. Soil Biol Biochem 42:1051–1057CrossRefGoogle Scholar
  82. Wei J, Liu X, Wang Q, Wang C, Chen X, Li H (2014) Effect of rhizodeposition on pyrene bioaccessibility and microbial structure in pyrene and pyrene–lead polluted soil. Chemosphere 97:92–97PubMedCrossRefPubMedCentralGoogle Scholar
  83. Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009a) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254PubMedCrossRefPubMedCentralGoogle Scholar
  84. Weyens N, van Der Lelie D, Artois T, Smeets K, Taghavi S, Newman L, Carleer R, Vangronsveld J (2009b) Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation. Environ Sci Technol 43:9413–9418PubMedCrossRefPubMedCentralGoogle Scholar
  85. Weyens N, Taghavi S, Barac T, van der Lelie D, Boulet J, Artois T, Carleer R, Vangronsveld J (2009c) Bacteria associated with oak and ash on a TCE-contaminated site: characterization of isolates with potential to avoid evapo-transpiration of TCE. Environ Sci Pollut Res 16:830–843CrossRefGoogle Scholar
  86. Weyens N, Croes S, Dupae J, Newman L, van der Lelie D, Carleer R, Vangronsveld J (2010a) Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ Pollut 158:2422–2427PubMedCrossRefPubMedCentralGoogle Scholar
  87. Weyens N, Truyens S, Dupae J, Newman L, Taghavi S, van der Lelie D, Carleer R, Vangronsveld J (2010b) Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. Environ Pollut 158:2915–2919PubMedCrossRefPubMedCentralGoogle Scholar
  88. Weyens N, Schellingen K, Beckers B, Janssen J, Ceulemans R, van der Lelie D, Taghavi S, Carleer R, Vangronsveld J (2013) Potential of willow and its genetically engineered associated bacteria to remediate mixed Cd and toluene contamination. J Soils Sediments 13:176–188CrossRefGoogle Scholar
  89. Win KT, Tanaka F, Okazaki K, Ohwaki Y (2018) The ACC deaminase expressing endophyte Pseudomonas spp. enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants. Plant Physiol Biochem 127:599–607PubMedCrossRefPubMedCentralGoogle Scholar
  90. Xiao X, Luo S, Zeng G, Wei W, Wan Y, Chen L, Guo H, Cao Z, Yang L, Chen J, Xi Q (2010) Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresour Technol 101:1668–1674PubMedCrossRefPubMedCentralGoogle Scholar
  91. Yadav A, Yadav K (2017) Exploring the potential of endophytes in agriculture: a minireview. Adv Plants Agric Res 6(4):00221Google Scholar
  92. Yousaf S, Andria V, Reichenauer TG, Smalla K, Sessitsch A (2010) Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Lolium multiflorum) and Birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment. J Hazard Mater 184:523–532PubMedCrossRefPubMedCentralGoogle Scholar
  93. Yousaf S, Afzal M, Reichenauer TG, Brady CL, Sessitsch A (2011) Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains. Environ Pollut 159:2675–2683PubMedCrossRefPubMedCentralGoogle Scholar
  94. Yue B, Xue WY, Xiong LZ, Yu XQ, Luo LJ, Cui KH, Jin DM, Xing YZ, Zhang QF (2006) Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics 172:1213–1228PubMedPubMedCentralCrossRefGoogle Scholar
  95. Zeidler D, Zahringer U, Gerber I, Dubery I, Hartung T, Bors W, Hutzler P, Durner J (2004) Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci USA 101:15811–15816PubMedCrossRefPubMedCentralGoogle Scholar
  96. Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83(1):57–62PubMedCrossRefPubMedCentralGoogle Scholar
  97. Zhu LJ, Guan DX, Luo J, Rathinasabapathi B, Ma LQ (2014) Characterization of arsenic-resistant endophytic bacteria from hyperaccumuators Pteris vittata and Pteris multifida. Chemosphere 113:9–16PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Divya Singh
    • 1
  • Vipin Kumar Singh
    • 1
  • Amit Kishore Singh
    • 2
  1. 1.Center of Advanced Study in Botany, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.Botany DepartmentKamla Nehru Post Graduate CollegeRaebareliIndia

Personalised recommendations