Role of the Plant Root Microbiome in Abiotic Stress Tolerance

  • Daniel F. Caddell
  • Siwen Deng
  • Devin Coleman-DerrEmail author


During a growing season, agricultural crops are frequently exposed to abiotic stresses, which hinder plant growth and reduce crop productivity. Abiotic stresses include extreme temperatures, drought, submergence, soil salinization, and nutrient imbalances, and many of these stresses are predicted to increase in frequency or severity in the coming century. Maintaining high levels of crop productivity under increasingly suboptimal growth environments will require the development of new agronomic tools. One new and promising strategy involves the utilization of microorganisms, which have been shown to be capable of mitigating abiotic stresses, and the plant microbiome has the potential of promoting growth and protecting the host through a variety of molecular mechanisms. While studies have begun to explore how specific members of the root microbiome act to enhance plant growth, we still lack a full understanding of the role of the broader root microbiome in shaping plant stress tolerance. Emphasizing three of the most agriculturally significant abiotic challenges, namely, drought stress, salinity stress, and phosphate stress, this chapter describes our current understanding of the specific mechanisms the root microbiome can employ to help boost plant fitness and summarizes new methods through which the plant root microbiome has been leveraged in agricultural settings to reduce damage from abiotic stresses.


Abiotic stress Drought Salinity Phosphate deficiency Plant roots Microbiome PGPM Endosphere Rhizosphere 


  1. Akiyama K, Hayashi H (2006) Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot 97:925–931PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aleksza D, Horváth GV, Sándor G, Szabados L (2017) Proline accumulation is regulated by transcription factors associated with phosphate starvation. Plant Physiol 175(1):555–567PubMedPubMedCentralCrossRefGoogle Scholar
  3. Al-Garni SMS, et al (2006) Increasing NaCl-salt tolerance of a halophytic plant Phragmites australis by mycorrhizal symbiosis. Am Eurasian J Agric Environ Sci 1:119–126Google Scholar
  4. Aliasgharzadeh N, Rastin SN, Towfighi H, Alizadeh A (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11:119–122CrossRefGoogle Scholar
  5. Alster CJ, German DP, Lu Y, Allison SD (2013) Microbial enzymatic responses to drought and to nitrogen addition in a southern California grassland. Soil Biol Biochem 64:68–79CrossRefGoogle Scholar
  6. Álvarez S, Sánchez-Blanco MJ (2014) Long-term effect of salinity on plant quality, water relations, photosynthetic parameters and ion distribution in Callistemon citrinus. Plant Biol 16:757–764PubMedCrossRefPubMedCentralGoogle Scholar
  7. Álvarez S, Gómez-Bellot MJ, Castillo M et al (2012) Osmotic and saline effect on growth, water relations, and ion uptake and translocation in Phlomis purpurea plants. Environ Exp Bot 78:138–145CrossRefGoogle Scholar
  8. Anjum SA, Ashraf U, Tanveer M et al (2017) Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front Plant Sci 8:69PubMedPubMedCentralCrossRefGoogle Scholar
  9. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399PubMedPubMedCentralCrossRefGoogle Scholar
  10. Arzanesh MH, Alikhani HA, Khavazi K et al (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotechnol 27:197–205CrossRefGoogle Scholar
  11. Asano R, Nakai Y, Kawada W et al (2013) Seawater inundation from the 2011 Tohoku tsunami continues to strongly affect soil bacterial communities 1 year later. Microb Ecol 66:639–646PubMedCrossRefPubMedCentralGoogle Scholar
  12. Asghar HN, Setia R, Marschner P (2012) Community composition and activity of microbes from saline soils and non-saline soils respond similarly to changes in salinity. Soil Biol Biochem 47:175–178CrossRefGoogle Scholar
  13. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216CrossRefGoogle Scholar
  14. Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162Google Scholar
  15. Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543PubMedCrossRefPubMedCentralGoogle Scholar
  16. Baldwin DS, Rees GN, Mitchell AM et al (2006) The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater Wetland. Wetlands 26:455–464CrossRefGoogle Scholar
  17. Baltruschat H, Fodor J, Harrach BD et al (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510PubMedCrossRefPubMedCentralGoogle Scholar
  18. Balzergue C, Puech-Pagès V, Bécard G, Rochange SF (2011) The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J Exp Bot 62:1049–1060PubMedCrossRefPubMedCentralGoogle Scholar
  19. Balzergue C, Chabaud M, Barker DG et al (2013) High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. Front Plant Sci 4:426PubMedPubMedCentralCrossRefGoogle Scholar
  20. Barker AV, Pilbeam DJ (2015) Handbook of plant nutrition, 2nd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  21. Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577PubMedCrossRefPubMedCentralGoogle Scholar
  22. Bécard G, Piché Y (1989) Fungal growth stimulation by CO2 and root exudates in vesicular-arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55:2320–2325PubMedPubMedCentralGoogle Scholar
  23. Belimov AA, Dodd IC, Safronova VI et al (2014) Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiol Biochem 74:84–91PubMedCrossRefPubMedCentralGoogle Scholar
  24. Bielach A, Hrtyan M, Tognetti VB (2017) Plants under stress: involvement of auxin and cytokinin. Int J Mol Sci 18:1427. Scholar
  25. Binzel ML, Hess FD, Bressan RA, Hasegawa PM (1988) Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiol 86:607–614PubMedPubMedCentralCrossRefGoogle Scholar
  26. Blom CW, Voesenek LA (1996) Flooding: the survival strategies of plants. Trends Ecol Evol 11:290–295PubMedCrossRefPubMedCentralGoogle Scholar
  27. Bonfante P, Anca I-A (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383PubMedCrossRefPubMedCentralGoogle Scholar
  28. Boo YC, Jung J (1999) Water deficit—induced oxidative stress and antioxidative defenses in rice plants. J Plant Physiol 155:255–261CrossRefGoogle Scholar
  29. Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503PubMedCrossRefPubMedCentralGoogle Scholar
  30. Bouskill NJ, Lim HC, Borglin S et al (2013) Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J 7:384–394PubMedCrossRefPubMedCentralGoogle Scholar
  31. Bouskill NJ, Wood TE, Baran R et al (2016) Belowground response to drought in a tropical forest soil. I. Changes in microbial functional potential and metabolism. Front Microbiol 7:525PubMedPubMedCentralGoogle Scholar
  32. Bozsoki Z, Cheng J, Feng F et al (2017) Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proc Natl Acad Sci USA 114:E8118–E8127PubMedCrossRefPubMedCentralGoogle Scholar
  33. Bresson J, Varoquaux F, Bontpart T et al (2013) The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200:558–569PubMedCrossRefPubMedCentralGoogle Scholar
  34. Bulgarelli D, Rott M, Schlaeppi K et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95PubMedCrossRefPubMedCentralGoogle Scholar
  35. Canfora L, Bacci G, Pinzari F et al (2014) Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil? PLoS One 9:e106662PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281CrossRefGoogle Scholar
  37. Cao W-H, Liu J, He X-J et al (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143:707–719PubMedPubMedCentralCrossRefGoogle Scholar
  38. Castrillo G, Teixeira PJPL, Paredes SH et al (2017) Root microbiota drive direct integration of phosphate stress and immunity. Nature 543:513–518PubMedPubMedCentralCrossRefGoogle Scholar
  39. Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803PubMedCrossRefPubMedCentralGoogle Scholar
  40. Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:239–264CrossRefGoogle Scholar
  41. Chen W, Yang F, Zhang L, Wang J (2016) Organic acid secretion and phosphate solubilizing efficiency of Pseudomonas sp. PSB12: effects of phosphorus forms and carbon sources. Geomicrobiol J 33:870–877CrossRefGoogle Scholar
  42. Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918PubMedCrossRefPubMedCentralGoogle Scholar
  43. Chowdhury N, Marschner P, Burns RG (2011) Soil microbial activity and community composition: impact of changes in matric and osmotic potential. Soil Biol Biochem 43:1229–1236CrossRefGoogle Scholar
  44. Cohen AC, Bottini R, Piccoli PN (2008) Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regul 54:97–103CrossRefGoogle Scholar
  45. Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217:67–75CrossRefGoogle Scholar
  46. Cordell D, White S (2015) Tracking phosphorus security: indicators of phosphorus vulnerability in the global food system. Food Security 7:337–350CrossRefGoogle Scholar
  47. Correia MJ, Fonseca F, Azedo-Silva J et al (2005) Effects of water deficit on the activity of nitrate reductase and content of sugars, nitrate and free amino acids in the leaves and roots of sunflower and white lupin plants growing under two nutrient supply regimes. Physiol Plant 124:61–70CrossRefGoogle Scholar
  48. Creus CM, Graziano M, Casanovas EM et al (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221:297–303PubMedCrossRefPubMedCentralGoogle Scholar
  49. Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3:156–165PubMedPubMedCentralCrossRefGoogle Scholar
  50. Dai A (2011) Drought under global warming: a review. WIREs Clim Change 2:45–65CrossRefGoogle Scholar
  51. Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci Eng China 2:53Google Scholar
  52. Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action! Springer, Dordrecht, pp 1–15CrossRefGoogle Scholar
  53. de Zelicourt A, Al-Yousif M, Hirt H (2013) Rhizosphere microbes as essential partners for plant stress tolerance. Mol Plant 6:242–245PubMedCrossRefPubMedCentralGoogle Scholar
  54. Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428PubMedCrossRefPubMedCentralGoogle Scholar
  55. Dos Reis SP, Lima AM, de Souza CRB (2012) Recent molecular advances on downstream plant responses to abiotic stress. Int J Mol Sci 13:8628–8647PubMedPubMedCentralCrossRefGoogle Scholar
  56. Dubois M, Van den Broeck L, Inzé D (2018) The pivotal role of ethylene in plant growth. Trends Plant Sci 23:311–323PubMedPubMedCentralCrossRefGoogle Scholar
  57. Edwards J, Johnson C, Santos-Medellín C et al (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA 112:E911–E920PubMedCrossRefPubMedCentralGoogle Scholar
  58. Edwards JA, Santos-Medellín CM, Liechty ZS et al (2018) Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol 16:e2003862PubMedPubMedCentralCrossRefGoogle Scholar
  59. Estrada-Luna AA, Davies FT Jr (2003) Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid and growth of micropropagated chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post-acclimatization. J Plant Physiol 160:1073–1083PubMedCrossRefPubMedCentralGoogle Scholar
  60. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280PubMedPubMedCentralCrossRefGoogle Scholar
  61. Fahad S, Hussain S, Matloob A et al (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404CrossRefGoogle Scholar
  62. Farooq M, Wahid A, Kobayashi N et al (2009) Plant drought stress: effects, mechanisms and management. In: Lichtfouse E, Navarrete M, Debaeke P et al (eds) Sustainable agriculture. Springer, Dordrecht, pp 153–188CrossRefGoogle Scholar
  63. Fazeli F, Ghorbanli M, Niknam V (2007) Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars. Biol Plant 51:98–103CrossRefGoogle Scholar
  64. Feng G, Zhang FS, Li XL et al (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190CrossRefGoogle Scholar
  65. Fitzpatrick CR, Copeland J, Wang PW et al (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci USA 115:E1157–E1165PubMedCrossRefPubMedCentralGoogle Scholar
  66. Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants: where next? Funct Plant Biol 22:875–884CrossRefGoogle Scholar
  67. Forchetti G, Masciarelli O, Alemano S et al (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152PubMedCrossRefPubMedCentralGoogle Scholar
  68. Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59CrossRefGoogle Scholar
  69. Fresneau C, Ghashghaie J, Cornic G (2007) Drought effect on nitrate reductase and sucrose-phosphate synthase activities in wheat (Triticum durum L.): role of leaf internal CO2. J Exp Bot 58:2983–2992PubMedCrossRefPubMedCentralGoogle Scholar
  70. Friesen ML, Porter SS, Stark SC et al (2011) Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst 42:23–46. Scholar
  71. Garrido-Oter R, Nakano RT, Dombrowski N et al (2018) Modular traits of the Rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell Host Microbe 24:155–167.e5PubMedPubMedCentralCrossRefGoogle Scholar
  72. German MA, Burdman S, Okon Y, Kigel J (2000) Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biol Fertil Soils 32:259–264CrossRefGoogle Scholar
  73. Giovannetti M, Sbrana C, Citernesi AS, Avio L (1996) Analysis of factors involved in fungal recognition responses to host-derived signals by arbuscular mycorrhizal fungi. New Phytol 133:65–71CrossRefGoogle Scholar
  74. Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7PubMedCrossRefPubMedCentralGoogle Scholar
  75. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401PubMedPubMedCentralCrossRefGoogle Scholar
  76. Gómez-Bellot MJ, Ortuño MF, Nortes PA et al (2015) Protective effects of Glomus iranicum var. tenuihypharum on soil and Viburnum tinus plants irrigated with treated wastewater under field conditions. Mycorrhiza 25:399–409PubMedCrossRefPubMedCentralGoogle Scholar
  77. Gontia-Mishra I, Sapre S, Kachare S, Tiwari S (2017) Molecular diversity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing PGPR from wheat (Triticum aestivum L.) rhizosphere. Plant Soil 414:213–227CrossRefGoogle Scholar
  78. González E, Solano R, Rubio V et al (2005) Phosphate transporter traffic facilitator1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 17:3500–3512PubMedPubMedCentralCrossRefGoogle Scholar
  79. Gornall J, Betts R, Burke E et al (2010) Implications of climate change for agricultural productivity in the early twenty-first century. Philos Trans R Soc Lond Ser B Biol Sci 365:2973–2989CrossRefGoogle Scholar
  80. Großkinsky DK, Tafner R, Moreno MV et al (2016) Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci Rep 6:23310PubMedPubMedCentralCrossRefGoogle Scholar
  81. Grover M, Ali SZ, Sandhya V et al (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240CrossRefGoogle Scholar
  82. Gusain YS, Singh US, Sharma AK (2015) Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.). Afr J Biotechnol 14:764–773CrossRefGoogle Scholar
  83. Habib SH, Kausar H, Saud HM (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed Res Int 2016:6284547. Scholar
  84. Hacquard S, Kracher B, Hiruma K et al (2016) Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nat Commun 7:11362PubMedPubMedCentralCrossRefGoogle Scholar
  85. Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123PubMedCrossRefPubMedCentralGoogle Scholar
  86. Ham B-K, Chen J, Yan Y, Lucas WJ (2018) Insights into plant phosphate sensing and signaling. Curr Opin Biotechnol 49:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  87. Haney CH, Samuel BS, Bush J, Ausubel FM (2015) Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat Plants 1:15051. Scholar
  88. Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471CrossRefGoogle Scholar
  89. Hartmann M, Brunner I, Hagedorn F et al (2017) A decade of irrigation transforms the soil microbiome of a semi-arid pine forest. Mol Ecol 26:1190–1206PubMedCrossRefPubMedCentralGoogle Scholar
  90. Harvey CA, Rakotobe ZL, Rao NS et al (2014) Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar. Philos Trans R Soc Lond Ser B Biol Sci 369:20130089CrossRefGoogle Scholar
  91. Heidari M, Golpayegani A (2012) Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). J Saudi Soc Agric Sci 11:57–61Google Scholar
  92. Hernández JA, Olmos E, Corpas FJ et al (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105:151–167CrossRefGoogle Scholar
  93. Hernández JA, Ferrer MA, Jiménez A et al (2001) Antioxidant systems and O(2)(.-)/H(2)O(2) production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127:817–831PubMedPubMedCentralCrossRefGoogle Scholar
  94. Herrera Paredes S, Gao T, Law TF et al (2018) Design of synthetic bacterial communities for predictable plant phenotypes. PLoS Biol 16:e2003962PubMedPubMedCentralCrossRefGoogle Scholar
  95. Hirabayashi Y, Mahendran R, Koirala S et al (2013) Global flood risk under climate change. Nat Clim Chang 3:816CrossRefGoogle Scholar
  96. Hiruma K, Gerlach N, Sacristán S et al (2016) Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165:464–474PubMedPubMedCentralCrossRefGoogle Scholar
  97. Hu L, Robert CAM, Cadot S et al (2018) Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun 9:2738PubMedPubMedCentralCrossRefGoogle Scholar
  98. Hueso S, García C, Hernández T (2012) Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. Soil Biol Biochem 50:167–173CrossRefGoogle Scholar
  99. Hussain MB, Zahir ZA, Asghar HN, Asgher M (2014) Can catalase and exopolysaccharides producing rhizobia ameliorate drought stress in wheat? Int J Agric Biol 16:3–13Google Scholar
  100. Ibekwe AM, Poss JA, Grattan SR et al (2010) Bacterial diversity in cucumber (Cucumis sativus) rhizosphere in response to salinity, soil pH, and boron. Soil Biol Biochem 42:567–575CrossRefGoogle Scholar
  101. Ibekwe AM, Ors S, Ferreira JFS, Liu X, Suarez DL (2017) Seasonal induced changes in spinach rhizosphere microbial community structure with varying salinity and drought. Sci Total Environ 579:1485–1495Google Scholar
  102. Iqbal MA, Khalid M, Zahir ZA, Ahmad R (2016) Auxin producing plant growth promoting rhizobacteria improve growth, physiology and yield of maize under saline field conditions. Int J Agric Biol 18:37–45CrossRefGoogle Scholar
  103. Jalili F, Khavazi K, Pazira E et al (2009) Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674CrossRefGoogle Scholar
  104. Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410PubMedCrossRefPubMedCentralGoogle Scholar
  105. Kang S-M, Radhakrishnan R, Khan AL et al (2014) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124PubMedCrossRefPubMedCentralGoogle Scholar
  106. Kefu Z, Hai F, San Z, Jie S (2003) Study on the salt and drought tolerance of Suaeda salsa and Kalanchoe daigremontiana under iso-osmotic salt and water stress. Plant Sci 165:837–844CrossRefGoogle Scholar
  107. Khan GA, Vogiatzaki E, Glauser G, Poirier Y (2016) Phosphate deficiency induces the jasmonate pathway and enhances resistance to insect herbivory. Plant Physiol 171:632–644PubMedPubMedCentralCrossRefGoogle Scholar
  108. Kim Y-C, Glick BR, Bashan Y, Ryu C-M (2012) Enhancement of plant drought tolerance by microbes. In: Aroca R (ed) Plant responses to drought stress: from morphological to molecular features. Springer, Berlin, pp 383–413CrossRefGoogle Scholar
  109. Kitagawa Y, Yamamoto H, Oritani T (1995) Biosynthesis of abscisic acid in the fungus Cercospora cruenta: stimulation of biosynthesis by water stress and isolation of a transgenic mutant with reduced biosynthetic capacity. Plant Cell Physiol 36:557–564Google Scholar
  110. Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301CrossRefGoogle Scholar
  111. Kohler J, Hernández JA, Caravaca F, Roldán A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151CrossRefGoogle Scholar
  112. Kohler J, Hernández JA, Caravaca F, Roldán A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65:245–252CrossRefGoogle Scholar
  113. Kosová K, Vítámvás P, Prášil IT (2014) Wheat and barley dehydrins under cold, drought, and salinity – what can LEA-II proteins tell us about plant stress response? Front Plant Sci 5:343PubMedPubMedCentralGoogle Scholar
  114. Kumar A, Verma JP (2018) Does plant–microbe interaction confer stress tolerance in plants: a review? Microbiol Res 207:41–52PubMedCrossRefPubMedCentralGoogle Scholar
  115. Kumar A, Dames JF, Gupta A et al (2015) Current developments in arbuscular mycorrhizal fungi research and its role in salinity stress alleviation: a biotechnological perspective. Crit Rev Biotechnol 35:461–474PubMedCrossRefPubMedCentralGoogle Scholar
  116. Lafitte HR, Yongsheng G, Yan S, Li Z-K (2007) Whole plant responses, key processes, and adaptation to drought stress: the case of rice. J Exp Bot 58:169–175PubMedCrossRefPubMedCentralGoogle Scholar
  117. Lareen A, Burton F, Schäfer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587PubMedPubMedCentralCrossRefGoogle Scholar
  118. Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87PubMedPubMedCentralCrossRefGoogle Scholar
  119. Leveau JHJ, Gerards S (2008) Discovery of a bacterial gene cluster for catabolism of the plant hormone indole 3-acetic acid. FEMS Microbiol Ecol 65:238–250PubMedCrossRefPubMedCentralGoogle Scholar
  120. Li Z, Bai T, Dai L et al (2016) A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger. Sci Rep 6:25313PubMedPubMedCentralCrossRefGoogle Scholar
  121. Liu F, Xing S, Ma H et al (2013) Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotechnol 97:9155–9164PubMedCrossRefPubMedCentralGoogle Scholar
  122. Liu M, Li M, Liu K, Sui N (2015) Effects of drought stress on seed germination and seedling growth of different maize varieties. J Agric Sci 7:231Google Scholar
  123. Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett 2:014002CrossRefGoogle Scholar
  124. Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F (1999) Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol 119:1091–1100PubMedPubMedCentralCrossRefGoogle Scholar
  125. López-Arredondo DL, Leyva-González MA, González-Morales SI et al (2014) Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol 65:95–123PubMedCrossRefPubMedCentralGoogle Scholar
  126. Lundberg DS, Lebeis SL, Paredes SH et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90PubMedPubMedCentralCrossRefGoogle Scholar
  127. Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049PubMedPubMedCentralCrossRefGoogle Scholar
  128. Maillet F, Poinsot V, André O et al (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63PubMedCrossRefPubMedCentralGoogle Scholar
  129. Mandeel QA (2006) Biodiversity of the genus Fusarium in saline soil habitats. J Basic Microbiol 46:480–494PubMedCrossRefPubMedCentralGoogle Scholar
  130. Manickavelu A, Nadarajan N, Ganesh SK et al (2006) Drought tolerance in rice: morphological and molecular genetic consideration. Plant Growth Regul 50:121–138CrossRefGoogle Scholar
  131. Martiny JB, Martiny AC, Weihe C et al (2017) Microbial legacies alter decomposition in response to simulated global change. ISME J 11:490–499PubMedCrossRefPubMedCentralGoogle Scholar
  132. Masson-Boivin C, Sachs JL (2017) Symbiotic nitrogen fixation by rhizobia-the roots of a success story. Curr Opin Plant Biol 44:7–15PubMedCrossRefPubMedCentralGoogle Scholar
  133. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572CrossRefGoogle Scholar
  134. Mendes R, Kruijt M, de Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100PubMedCrossRefPubMedCentralGoogle Scholar
  135. Min W, Guo H, Zhang W et al (2016) Response of soil microbial community and diversity to increasing water salinity and nitrogen fertilization rate in an arid soil. Acta Agric Scand Sect B Soil Plant Sci 66:117–126Google Scholar
  136. Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19CrossRefGoogle Scholar
  137. Molina-Favero C, Creus CM, Simontacchi M et al (2008) Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol Plant-Microbe Interact 21:1001–1009PubMedCrossRefPubMedCentralGoogle Scholar
  138. Moran JF, Becana M, Iturbe-Ormaetxe I et al (1994) Drought induces oxidative stress in pea plants. Planta 194:346–352CrossRefGoogle Scholar
  139. Mueller ND, Gerber JS, Johnston M et al (2012) Closing yield gaps through nutrient and water management. Nature 490:254–257PubMedCrossRefPubMedCentralGoogle Scholar
  140. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250CrossRefGoogle Scholar
  141. Munns R, James RA (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253:201–218CrossRefGoogle Scholar
  142. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681CrossRefGoogle Scholar
  143. Murphy BR, Doohan FM, Hodkinson TR (2018) From concept to commerce: developing a successful fungal endophyte inoculant for agricultural crops. J Fungi (Basel) 4:24. Scholar
  144. Nadeem SM, Ahmad M, Zahir ZA et al (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448PubMedCrossRefPubMedCentralGoogle Scholar
  145. Navarro JM, Pérez-Tornero O, Morte A (2014) Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. J Plant Physiol 171:76–85PubMedCrossRefPubMedCentralGoogle Scholar
  146. Naylor D, Coleman-Derr D (2017) Drought stress and root-associated bacterial communities. Front Plant Sci 8:2223PubMedCrossRefPubMedCentralGoogle Scholar
  147. Naylor D, DeGraaf S, Purdom E, Coleman-Derr D (2017) Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J 11:2691–2704. Scholar
  148. Nejat N, Mantri N (2017) Plant immune system: crosstalk between responses to biotic and abiotic stresses the missing link in understanding plant defence. Curr Issues Mol Biol 23:1–16PubMedCrossRefPubMedCentralGoogle Scholar
  149. Niu X, Song L, Xiao Y, Ge W (2017) Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front Microbiol 8:2580PubMedCrossRefPubMedCentralGoogle Scholar
  150. Ofek-Lalzar M, Sela N, Goldman-Voronov M et al (2014) Niche and host-associated functional signatures of the root surface microbiome. Nat Commun 5:4950PubMedCrossRefPubMedCentralGoogle Scholar
  151. Okçu G, Kaya MD, Atak M (2005) Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turk J Agric For 29:237–242Google Scholar
  152. Onaga G, Wydra K (2016) Advances in plant tolerance to abiotic stresses. In: Abdurakhmonov IY (ed) Plant genomics. InTech, RijekaGoogle Scholar
  153. Osakabe Y, Osakabe K, Shinozaki K, Tran L-SP (2014) Response of plants to water stress. Front Plant Sci 5:86PubMedPubMedCentralCrossRefGoogle Scholar
  154. Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537PubMedPubMedCentralGoogle Scholar
  155. Pankhurst CE, Yu S, Hawke BG, Harch BD (2001) Capacity of fatty acid profiles and substrate utilization patterns to describe differences in soil microbial communities associated with increased salinity or alkalinity at three locations in South Australia. Biol Fertil Soils 33:204–217CrossRefGoogle Scholar
  156. Pant B-D, Pant P, Erban A et al (2015) Identification of primary and secondary metabolites with phosphorus status-dependent abundance in Arabidopsis, and of the transcription factor PHR1 as a major regulator of metabolic changes during phosphorus limitation. Plant Cell Environ 38:172–187PubMedCrossRefPubMedCentralGoogle Scholar
  157. Pedrini S, Merritt DJ, Stevens J, Dixon K (2017) Seed coating: science or marketing spin? Trends Plant Sci 22:106–116PubMedCrossRefPubMedCentralGoogle Scholar
  158. Peiffer JA, Spor A, Koren O et al (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci USA 110:6548–6553PubMedCrossRefPubMedCentralGoogle Scholar
  159. Peñuelas J, Poulter B, Sardans J et al (2013) Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat Commun 4:2934PubMedCrossRefPubMedCentralGoogle Scholar
  160. Pérez-Jaramillo JE, Mendes R, Raaijmakers JM (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol 90:635–644PubMedCrossRefPubMedCentralGoogle Scholar
  161. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799PubMedCrossRefPubMedCentralGoogle Scholar
  162. Piccoli P, Lucangeli CD, Bottini R, Schneider G (1997) Hydrolysis of [17,17-2H2]gibberellin A20-glucoside and [17,17-2H2]gibberellin A20-glucosyl ester by Azospirillum lipoferum cultured in a nitrogen-free biotin-based chemically-defined medium. Plant Growth Regul 23:179–182CrossRefGoogle Scholar
  163. Pirdashti H, Sarvestani ZT, Nematzadeh GH, Ismail A (2003) Effect of water stress on seed germination and seedling growth of rice (Oryza sativa L.) genotypes. Pak J Agron 2:217–222CrossRefGoogle Scholar
  164. Puga MI, Rojas-Triana M, de Lorenzo L et al (2017) Novel signals in the regulation of Pi starvation responses in plants: facts and promises. Curr Opin Plant Biol 39:40–49PubMedCrossRefPubMedCentralGoogle Scholar
  165. Qin Y, Druzhinina IS, Pan X, Yuan Z (2016) Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnol Adv 34:1245–1259PubMedCrossRefPubMedCentralGoogle Scholar
  166. Ramachandra Reddy A, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202PubMedCrossRefPubMedCentralGoogle Scholar
  167. Ramadoss D, Lakkineni VK, Bose P et al (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springerplus 2:6PubMedPubMedCentralCrossRefGoogle Scholar
  168. Rampino P, Pataleo S, Gerardi C et al (2006) Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ 29:2143–2152PubMedCrossRefPubMedCentralGoogle Scholar
  169. Rath KM, Maheshwari A, Bengtson P, Rousk J (2016) Comparative toxicities of salts on microbial processes in soil. Appl Environ Microbiol 82:2012–2020PubMedPubMedCentralCrossRefGoogle Scholar
  170. Richey AS, Thomas BF, Lo M-H et al (2015) Quantifying renewable groundwater stress with GRACE. Water Resour Res 51:5217–5238PubMedPubMedCentralCrossRefGoogle Scholar
  171. Rietz DN, Haynes RJ (2003) Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35:845–854CrossRefGoogle Scholar
  172. Rima FS, Biswas S, Sarker PK et al (2018) Bacteria endemic to saline coastal belt and their ability to mitigate the effects of salt stress on rice growth and yields. Ann Microbiol 68:525–535. Scholar
  173. Rodriguez RJ, Henson J, Van Volkenburgh E et al (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416PubMedCrossRefPubMedCentralGoogle Scholar
  174. Rodríguez-Salazar J, Suárez R, Caballero-Mellado J, Iturriaga G (2009) Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol Lett 296:52–59PubMedCrossRefPubMedCentralGoogle Scholar
  175. Roesch LFW, Fulthorpe RR, Riva A et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290PubMedPubMedCentralCrossRefGoogle Scholar
  176. Rousk J, Elyaagubi FK, Jones DL, Godbold DL (2011) Bacterial salt tolerance is unrelated to soil salinity across an arid agroecosystem salinity gradient. Soil Biol Biochem 43:1881–1887CrossRefGoogle Scholar
  177. Sadeghi A, Karimi E, Dahaji PA et al (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28:1503–1509CrossRefGoogle Scholar
  178. Salomon MV, Bottini R, de Souza Filho GA et al (2014) Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine. Physiol Plant 151:359–374PubMedCrossRefPubMedCentralGoogle Scholar
  179. Samarah NH (2005) Effects of drought stress on growth and yield of barley. Agron Sustain Dev 25:145–149CrossRefGoogle Scholar
  180. Sandhya V, Ali SZ, Grover M et al (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26CrossRefGoogle Scholar
  181. Sandhya V, Ali SZ, Grover M et al (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62:21–30CrossRefGoogle Scholar
  182. Santos-Medellín C, Edwards J, Liechty Z et al (2017) Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. MBio 8:e00764-17. Scholar
  183. Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda M d C, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99PubMedCrossRefPubMedCentralGoogle Scholar
  184. Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292PubMedCrossRefPubMedCentralGoogle Scholar
  185. Satyaprakash M, Nikitha T, Reddi EUB et al (2017) Phosphorous and phosphate solubilising bacteria and their role in plant nutrition. Int J Curr Microbiol Appl Sci 6:2133–2144CrossRefGoogle Scholar
  186. Schmidt TSB, Raes J, Bork P (2018) The human gut microbiome: from association to modulation. Cell 172:1198–1215PubMedCrossRefPubMedCentralGoogle Scholar
  187. Schulz-Bohm K, Gerards S, Hundscheid M et al (2018) Calling from distance: attraction of soil bacteria by plant root volatiles. ISME J 12:1252–1262PubMedCrossRefPubMedCentralGoogle Scholar
  188. Schwessinger B, Ronald PC (2012) Plant innate immunity: perception of conserved microbial signatures. Annu Rev Plant Biol 63:451–482PubMedCrossRefPubMedCentralGoogle Scholar
  189. Selvakumar G, Shagol CC, Kim K et al (2018) Spore associated bacteria regulates maize root K+/Na+ ion homeostasis to promote salinity tolerance during arbuscular mycorrhizal symbiosis. BMC Plant Biol 18:109PubMedPubMedCentralCrossRefGoogle Scholar
  190. Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341PubMedPubMedCentralCrossRefGoogle Scholar
  191. Sessitsch A, Coenye T, Sturz AV et al (2005) Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol 55:1187–1192PubMedCrossRefPubMedCentralGoogle Scholar
  192. Sgherri CLM, Navari-Izzo F (1995) Sunflower seedlings subjected to increasing water deficit stress: oxidative stress and defence mechanisms. Physiol Plant 93:25–30CrossRefGoogle Scholar
  193. Shakir MA, Bano A, Arshad M (2012) Rhizosphere bacteria containing ACC-deaminase conferred drought tolerance in wheat grown under semi-arid climate. Soil Environ 31:108–112Google Scholar
  194. Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151CrossRefGoogle Scholar
  195. Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46:209–221CrossRefGoogle Scholar
  196. Shen L, Wu X-Q, Zeng Q-W, Liu H-B (2016) Regulation of soluble phosphate on the ability of phytate mineralization and β-propeller phytase gene expression of Pseudomonas fluorescens JZ-DZ1, a phytate-mineralizing rhizobacterium. Curr Microbiol 73:915–923PubMedCrossRefPubMedCentralGoogle Scholar
  197. Shi H, Chen L, Ye T et al (2014) Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol Biochem 82:209–217PubMedCrossRefPubMedCentralGoogle Scholar
  198. Siddikee MA, Glick BR, Chauhan PS et al (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49:427–434PubMedCrossRefPubMedCentralGoogle Scholar
  199. Sjøgaard KS, Valdemarsen TB, Treusch AH (2018) Responses of an agricultural soil microbiome to flooding with seawater after managed coastal realignment. Microorganisms 6:12. Scholar
  200. Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24:201–207PubMedCrossRefPubMedCentralGoogle Scholar
  201. Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524CrossRefGoogle Scholar
  202. Steudle E (2000) Water uptake by roots: effects of water deficit. J Exp Bot 51:1531–1542PubMedCrossRefPubMedCentralGoogle Scholar
  203. Stoll M, Loveys B, Dry P (2000) Hormonal changes induced by partial rootzone drying of irrigated grapevine. J Exp Bot 51:1627–1634PubMedCrossRefPubMedCentralGoogle Scholar
  204. Suárez R, Wong A, Ramírez M et al (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant-Microbe Interact 21:958–966PubMedCrossRefPubMedCentralGoogle Scholar
  205. Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296:131–136PubMedCrossRefPubMedCentralGoogle Scholar
  206. Sundström JF, Albihn A, Boqvist S et al (2014) Future threats to agricultural food production posed by environmental degradation, climate change, and animal and plant diseases–a risk analysis in three economic and climate settings. Food Sec 6:201–215CrossRefGoogle Scholar
  207. Szabo S, Hossain MS, Adger WN et al (2016) Soil salinity, household wealth and food insecurity in tropical deltas: evidence from south-west coast of Bangladesh. Sustain Sci 11:411–421PubMedCrossRefPubMedCentralGoogle Scholar
  208. Taylor JL, Zaharia LI, Chen H et al (2006) Biotransformation of adenine and cytokinins by the rhizobacterium Serratia proteamaculans. Phytochemistry 67:1887–1894PubMedCrossRefPubMedCentralGoogle Scholar
  209. Thompson LR, Sanders JG, McDonald D et al (2017) A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551(7681):457–463. Scholar
  210. Thomson MJ, de Ocampo M, Egdane J et al (2010) Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3:148–160CrossRefGoogle Scholar
  211. Tian CY, Feng G, Li XL, Zhang FS (2004) Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl Soil Ecol 26:143–148CrossRefGoogle Scholar
  212. Toju H, Peay KG, Yamamichi M et al (2018) Core microbiomes for sustainable agroecosystems. Nat Plants 4:247–257PubMedCrossRefPubMedCentralGoogle Scholar
  213. Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138CrossRefGoogle Scholar
  214. Tripathi S, Kumari S, Chakraborty A et al (2006) Microbial biomass and its activities in salt-affected coastal soils. Biol Fertil Soils 42:273–277CrossRefGoogle Scholar
  215. Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr Microbiol 59:489–496CrossRefGoogle Scholar
  216. van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310CrossRefGoogle Scholar
  217. van der Voort M, Kempenaar M, van Driel M et al (2016) Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression. Ecol Lett 19:375–382PubMedCrossRefPubMedCentralGoogle Scholar
  218. VanBogelen RA, Olson ER, Wanner BL, Neidhardt FC (1996) Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli. J Bacteriol 178:4344–4366PubMedPubMedCentralCrossRefGoogle Scholar
  219. Vardharajula S, Zulfikar Ali S, Grover M et al (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6:1–14CrossRefGoogle Scholar
  220. Velzquez-Sepulveda I, Santoyo G (2010) Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. Genet Mol Res 9:2372–2380CrossRefGoogle Scholar
  221. Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86PubMedPubMedCentralCrossRefGoogle Scholar
  222. Vílchez JI, García-Fontana C, Román-Naranjo D et al (2016) Plant drought tolerance enhancement by trehalose production of desiccation-tolerant microorganisms. Front Microbiol 7:1577PubMedPubMedCentralCrossRefGoogle Scholar
  223. Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24PubMedCrossRefPubMedCentralGoogle Scholar
  224. Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223CrossRefGoogle Scholar
  225. Walder F, Brulé D, Koegel S et al (2015) Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytol 205:1632–1645PubMedCrossRefPubMedCentralGoogle Scholar
  226. Walitang DI, Kim K, Madhaiyan M et al (2017) Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice. BMC Microbiol 17:209PubMedPubMedCentralCrossRefGoogle Scholar
  227. Walitang DI, Kim C-G, Kim K et al (2018) The influence of host genotype and salt stress on the seed endophytic community of salt-sensitive and salt-tolerant rice cultivars. BMC Plant Biol 18:51PubMedPubMedCentralCrossRefGoogle Scholar
  228. Waller F, Achatz B, Baltruschat H et al (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391PubMedCrossRefPubMedCentralGoogle Scholar
  229. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14PubMedCrossRefPubMedCentralGoogle Scholar
  230. Wichern J, Wichern F, Joergensen RG (2006) Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 137:100–108CrossRefGoogle Scholar
  231. Wilkinson S, Kudoyarova GR, Veselov DS et al (2012) Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot 63:3499–3509PubMedPubMedCentralCrossRefGoogle Scholar
  232. Xu L, Naylor D, Dong Z et al (2018) Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc Natl Acad Sci USA 115:E4284–E4293PubMedCrossRefPubMedCentralGoogle Scholar
  233. Yadav SK (2010) Cold stress tolerance mechanisms in plants. A review. Agron Sustain Dev 30:515–527CrossRefGoogle Scholar
  234. Yaish MW, Al-Lawati A, Jana GA et al (2016) Impact of soil salinity on the structure of the bacterial endophytic community identified from the roots of caliph medic (Medicago truncatula). PLoS One 11:e0159007PubMedPubMedCentralCrossRefGoogle Scholar
  235. Yamato M, Ikeda S, Iwase K (2008) Community of arbuscular mycorrhizal fungi in a coastal vegetation on Okinawa island and effect of the isolated fungi on growth of sorghum under salt-treated conditions. Mycorrhiza 18:241–249CrossRefGoogle Scholar
  236. Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4CrossRefGoogle Scholar
  237. Yao L, Wu Z, Zheng Y et al (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46:49–54CrossRefGoogle Scholar
  238. Yuan Z, Druzhinina IS, Labbé J et al (2016) Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Sci Rep 6:32467PubMedPubMedCentralCrossRefGoogle Scholar
  239. Zahir ZA, Munir A, Asghar HN et al (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963PubMedPubMedCentralGoogle Scholar
  240. Zandalinas SI, Mittler R, Balfagón D et al (2018) Plant adaptations to the combination of drought and high temperatures. Physiol Plant 162:2–12PubMedCrossRefPubMedCentralGoogle Scholar
  241. Zargar SM, Gupta N, Nazir M et al (2017) Impact of drought on photosynthesis: molecular perspective. Plant Gene 11:154–159CrossRefGoogle Scholar
  242. Zeid IM, Shedeed ZA (2006) Response of alfalfa to putrescine treatment under drought stress. Biol Plant 50:635CrossRefGoogle Scholar
  243. Zhalnina K, Louie KB, Hao Z et al (2018) Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol 3:470–480PubMedCrossRefPubMedCentralGoogle Scholar
  244. Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res 97:111–119CrossRefGoogle Scholar
  245. Zhang H, Kim M-S, Sun Y et al (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21:737–744PubMedCrossRefPubMedCentralGoogle Scholar
  246. Zhang L, Gao G, Tang X, Shao K (2014) Can the freshwater bacterial communities shift to the “marine-like” taxa? J Basic Microbiol 54:1264–1272PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Daniel F. Caddell
    • 1
    • 2
  • Siwen Deng
    • 1
  • Devin Coleman-Derr
    • 1
    • 2
    Email author
  1. 1.Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyUSA
  2. 2.Plant Gene Expression Center, USDA ARSAlbanyUSA

Personalised recommendations