General Introduction

  • Manel HammamiEmail author
Part of the Springer Theses book series (Springer Theses)


Energy demand has increased enormously, and the consumption of fossil fuels and nuclear energy has caused many environmental problems. In fact, fossil fuels are exhaustible, polluting and rather expensive. However, the development of clean and renewable energies such as wind, biomass, geothermal and photovoltaic, are a promising solution to overcome problems of conventional energy sources.


  1. 1.
    S.B. Kjaer, J.K. Pedersen, F. Blaabjerg, A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Trans. Ind. Appl. 41(5), 1292–1306 (2005)CrossRefGoogle Scholar
  2. 2.
    M. Hammami, G. Grandi, M. Rudan, An improved MPPT algorithm based on hybrid RCC scheme for single-phase PV systems, in IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society (2016), pp. 3024–3029Google Scholar
  3. 3.
    N. Femia, G. Petrone, G. Spagnuolo, M. Vitelli, Optimization of perturb and observe maximum power point tracking method. IEEE Trans. Power Electron. 20(4), 963–973 (2005)CrossRefGoogle Scholar
  4. 4.
    M. Khaled, H. Ali, M. Abd-El Sattar, A.A. Elbaset, Implementation of a modified perturb and observe maximum power point tracking algorithm for photovoltaic system using an embedded microcontroller. IET Renew. Power Gener. 10(4), 551–560 (2016)CrossRefGoogle Scholar
  5. 5.
    R.M. Linus, P. Damodharan, Maximum power point tracking method using a modified perturb and observe algorithm for grid connected wind energy conversion systems. IET Renew. Power Gener. 9, 682–689 (2015)CrossRefGoogle Scholar
  6. 6.
    L. Piegari, R. Rizzo, I. Spina, P. Tricoli, Optimized adaptive perturb and observe maximum power point tracking control for photovoltaic generation. Energies 8(5), 3418–3436 (2015)CrossRefGoogle Scholar
  7. 7.
    E. Kandemir, N.S. Cetin, S. Borekci, A comprehensive overview of maximum power extraction methods for PV systems. Renew. Sustain. Energy Rev. 78, 93–112 (2017)CrossRefGoogle Scholar
  8. 8.
    C. Li, Y. Chen, D. Zhou, J. Liu, J. Zeng, A high-performance adaptive incremental conductance MPPT algorithm for photovoltaic systems. Energies 9(4), 288 (2016)CrossRefGoogle Scholar
  9. 9.
    D. Sera, L. Mathe, T. Kerekes, S.V. Spataru, R. Teodorescu, On the perturb-and-observe and incremental conductance MPPT methods for PV systems. IEEE J. Photovoltaics 3(3), 1070–1078 (2013)CrossRefGoogle Scholar
  10. 10.
    S.E. Babaa, M. Armstrong, V. Pickert, T. Esram, P.L. Chapman, Overview of maximum power point tracking control methods for PV systems. IEEE Trans. Energy Convers. 22(08), 59–72 (2014)Google Scholar
  11. 11.
    T. Esram, P.L. Chapman, Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers. 22(2), 439–449 (2007)CrossRefGoogle Scholar
  12. 12.
    J.W. Kimball, P.T. Krein, Discrete-time ripple correlation control for maximum power point tracking. IEEE Trans. Power Electron. 23(5), 2353–2362 (2008)CrossRefGoogle Scholar
  13. 13.
    D. Casadei, G. Grandi, C. Rossi, Single-phase single-stage photovoltaic generation system based on a ripple correlation control maximum power point tracking. IEEE Trans. Energy Convers. 21(2), 562–568 (2006)CrossRefGoogle Scholar
  14. 14.
    R. Khanna, Q. Zhang, W.E. Stanchina, G.F. Reed, Z.H. Mao, Maximum power point tracking using model reference adaptive control. IEEE Trans. Power Electron. 29(3), 1490–1499 (2014)CrossRefGoogle Scholar
  15. 15.
    C. Boonmee, Y. Kumsuwan, Control of single-phase cascaded H-bridge multilevel inverter with modified MPPT for grid-connected photovoltaic systems, in IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society (2013), pp. 566–571Google Scholar
  16. 16.
    E. Babaei, S. Laali, Z. Bayat, A single-phase cascaded multilevel inverter based on a new basic unit with reduced number of power switches. IEEE Trans. Ind. Electron. 62(2), 922–929 (2015)CrossRefGoogle Scholar
  17. 17.
    G. Buticchi, E. Lorenzani, G. Franceschini, A five-level single-phase grid-connected converter for renewable distributed systems. IEEE Trans. Ind. Electron. 60(3), 906–918 (2013)CrossRefGoogle Scholar
  18. 18.
    G. Buticchi, D. Barater, E. Lorenzani, C. Concari, G. Franceschini, A nine-level grid-connected converter topology for single-phase transformerless PV systems. IEEE Trans. Ind. Electron. 61(8), 3951–3960 (2014)CrossRefGoogle Scholar
  19. 19.
    X. Yuan, H. Stemmler, I. Barbi, S. Member, Self-balancing of the clamping-capacitor-voltages in the multilevel capacitor-clamping-inverter under sub-harmonic PWM modulation. IEEE Trans. Power Electron. 16(2), 256–263 (2001)CrossRefGoogle Scholar
  20. 20.
    N.A. Rahim, J. Selvaraj, Multistring five-level inverter with novel PWM control scheme for PV application. IEEE Trans. Ind. Electron. 57(6), 2111–2123 (2010)CrossRefGoogle Scholar
  21. 21.
    S. Debnath, J. Qin, B. Bahrani, M. Saeedifard, P. Barbosa, Operation, control, and applications of the modular multilevel converter: a review. IEEE Trans. Power Electron. 30(1), 37–53 (2015)CrossRefGoogle Scholar
  22. 22.
    S.K. Chattopadhyay, C. Chakraborty, A new asymmetric multilevel inverter topology suitable for solar PV applications with varying irradiance. IEEE Trans. Sustain. Energy 3029(99), 1 (2017)Google Scholar
  23. 23.
    S.K. Chattopadhyay, C. Chakraborty, A new multilevel inverter topology with self-balancing level doubling network. IEEE Trans. Ind. Electron. 61(9), 4622–4631 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Electrical, Electronic and Information EngineeringUniversity of BolognaBolognaItaly

Personalised recommendations