Advertisement

Fusarium: Biodiversity, Ecological Significances, and Industrial Applications

  • Ahmed M. Abdel-Azeem
  • Mohamed A. Abdel-Azeem
  • Amira G. Darwish
  • Nieven A. Nafady
  • Nancy A. Ibrahim
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Since Link introduced genus Fusarium in 1809, the genus encompasses a diverse array of species of significance for being devastating plant pathogens that often produce a wide range of secondary metabolites and attracted an immense interest. The association of some of these metabolites with cellular toxicity, effects on growth and development of animals, and cancer in humans and domesticated animals is of particular interest to agriculture and food safety. The taxonomic history of Fusarium species has been reviewed in great detail elsewhere. The genus currently contains nearly less than 200 accepted species, and its economic and historical importance makes it remain at center stage in future discussions about nomenclature and mycological diversity. Therefore, together with its ubiquitous nature, these species are of great significant impacts on ecosystems, agriculture, food production, biotechnology, and human and animal health. The aim of this chapter is to give an overview of the studies aimed at the investigation of Fusarium biodiversity in a wide variety of different ecological habitats, ecological significances, and industrial applications.

Keywords

Biodiversity Different habitats Ecological significances Fusarium Industrial applications 

References

  1. Abd-Allah EF, Hashem A (2006) Seed mycoflora of Lens esculenta and their biocontrol by chitosan. Phytoparasitica 34(2):213–218Google Scholar
  2. Abd-El-Aziz FMR (1970) Studies on the damping-off root-rot diseases of soybean and lucerne in UAR M. Sc. Thesis Fac. Agric., Alexandria UniversityGoogle Scholar
  3. Abdel-Fattah HM (1973) Ecological studies on desert fungi in Egypt. Ph. D. Thesis. Bot. Dept., Faculty of Science, Assiut UniversityGoogle Scholar
  4. Abdel-Fattah HM, Moubasher AH, Abdel-Hafez SI (1977a) Studies on mycoflora of salt marshes in Egypt. 1-Sugar fungi. Myopathologia 61(1):19–26Google Scholar
  5. Abdel-Fattah HM, Moubasher AH, Abdel-Hafez SI (1977b) Fungus flora of root and leaf surface of broad bean cultivated in Oases, Egypt. Natur Monspeliensis Serie Bot Fac 27:167–177Google Scholar
  6. Abdel-Hafez SII (1974) Ecological studies on Egyptian soil fungi. Ph. D. Thesis. Bot Dept, Faculty of Science, Assiut University, EgyptGoogle Scholar
  7. Abdel-Hafez AI (1981) Studies on the genus Fusarium in Egypt. M. Sc. Thesis. Fac Sci, Assiut UniversityGoogle Scholar
  8. Abdel-Hafez AII (1988) Mycoflora of broad bean, chickpea and lentil seed in Egypt. Cryptogam Mycol 9:335–343Google Scholar
  9. Abd-Elhafez WAM (2004) Some mycological, phytopathological and physiological studies on mycobiota of selected newly reclaimed soils in Assiut Governorate, Egypt. M. Sc. Thesis, Faculty of Science, Assuit University, Egypt, p 238Google Scholar
  10. Abdel-Hafez SII, Abdel-Kader MIA (1980) Cellulose-decomposing fungi of barley grains in Egypt. Mycopathologia 70(2):77–82Google Scholar
  11. Abdel-Hafez SII, El-Kady IA, Mazen MB, El-Maghraby OMO (1987) Mycoflora and trichothecene toxins of paddy grains from Egypt. Mycopathologia 100:103–112Google Scholar
  12. Abdel-Hafez SII, Mohawed SM, El-Said AM (1989) Seasonal fluctuations of soil fungi of Wadi Qena at eastern desert of Egypt. Mycologica 25:113–125Google Scholar
  13. Abdel-Hafez SI, Mazen MB, Shaban GM (1990a) Seasonal fluctuation of rhizosphere and rhizoplane fungi of Egyptian wheat plant. Bull Fac Sci Assiut Univ 19(1-D):173–184Google Scholar
  14. Abdel-Hafez SII, Moubasher AH, Barakat A (1990b) Keratinophilic fungi and other moulds associated with air-dust particles from Egypt. Folia Microbiol 35:311–325Google Scholar
  15. Abdel-Hafez SII, El-Kady I, Mazen M, El-Maghraby O (1992) Effect of temperature and moisture content on germination capacity and paddy grain-borne fungi from Egypt. Pure Sci Eng 1:91–105Google Scholar
  16. Abdel-Hafez SII, Moubasher AH, Barakat A (1993) Seasonal variations of fungi of outdoor air and sedimented dust at Assiut region, Upper Egypt. Grana 32(2):115–121Google Scholar
  17. Abdel-Hafez SII, El-Said AHM, Gherbawy YAMH (1995) Seasonal fluctuation of soil and root surface fungi of sugarcane (Saccharum officinarum L.) in Egypt. Bull Fac Sci, Assiut Univ 24(2-D):131–151Google Scholar
  18. Abdel-Hafez SII, Moharram AM, Abdel-Sater MA (2000) Monthly variations in the Mycobiota of wheat fields in El-Kharga Oasis, Western Desert, Egypt. Bull Fac Sci, Assiut Univ 29(2-D):195–211Google Scholar
  19. Abdel-Hafez SII, El-Said AHM, Moharram AM, Saleem (2003) Effect of two insecticides (Sparkill and Tafaban) on incidence, growth and some enzymes production of fungi of maize plants in Upper Egypt. In: Proc. of the 8th Arab congress of plant protection, Omar Al-Mukhtar University, El-Beida, LibyaGoogle Scholar
  20. Abdel-Hafez SII, Ismail MA, Nemmat AH, Nivien AN (2009) The diversity of Fusarium species in Egyptian soils, with 3 new record species. Assiut Univ J Bot, The First International Conference of Biological Sciences, Spec Publ No.1:129–147Google Scholar
  21. Abdel-Hafez SII, Ismail MA, Hussein NA, Abdel-Hameed NA (2012) Fusaria and other fungi taxa associated with rhizosphere and rhizoplane of lentil and sesame at different growth stages. Acta Mycol 47(1):35–48Google Scholar
  22. Abdel-Kader MM, Ashour AMA (1999) Biological control of cowpea root rot in solarized soil. Egypt. J Phytopathol 27:9–18Google Scholar
  23. Abdel-Kader MIA, Moubasher AH, Abdel-Hafez SII (1978) Selective effects of five pesticides on soil and cotton-rhizosphere and rhizoplane fungus flora. Mycopathologia 66:117–123Google Scholar
  24. Abdel-Kader MIA, Moubasher AH, Abdel-Hafez SII (1979) Survey of the mycoflora of barley grains in Egypt. Mycopathologia 68(3):143–147Google Scholar
  25. Abd-ElKader M, Abd-Elrazik A, Darweish F, Rushdi M (1978) Fungi causing Damping-off and root rot of lentil in Upper Egypt. Ass J Agric Sci 8(1):112–123Google Scholar
  26. Abdel-Mallek AY, El-Maraghy SSM, Hasan HAH (1993) Mycotoxin-producing potential of some Aspergillus, Penicillium and Fusarium isolates found on corn grains and sun-flower seeds in Egypt. J Islam Acad Sci 6(3):189–192Google Scholar
  27. Abdel-Monem AM (2000) Status of seed pathology and seed health testing in Egypt. Seed Sci Technol 28:533–547Google Scholar
  28. Abdel-Razik A, Darweish F, Rushdi M, Abd-El-Kader A (1976) Role of polysaccharides in pathogenesis of fungi inciting damping-off and root-rot of lentil. Assiut J Agri Sci 7(3):15–24Google Scholar
  29. Abdel-Sater MA, Hemida SK, Eraky SA, Nasser MM (1995) Distribution of fungi on two mite species and their habitats in Egypt. Folia Microbiol 40(3):304–313Google Scholar
  30. Abedi-Tizaki M, Sabbagh SK (2012) Morphological and molecular identification of Fusarium head blight isolates from wheat in north of Iran. Aust J Crop Sci 6(9):1356–1361Google Scholar
  31. Abildgren MP, Lund F, Thrane U, El Mholt S (1987) Czapek-Dox agar iprodione and dicloran as a selective medium for the isolation of Fusarium species. Microbiology 5:83–86Google Scholar
  32. Abu El-Souod SM (1974) Studies on fungus-air spora in Egypt. Ph. D. Thesis. Botany Department, Faculty of Science, Assiut University, Egypt, p 228Google Scholar
  33. Aditiya HB, Mahila TMI, Chong WT, Nur H, Sebayang AH (2016) Second generation bioethanol production:a critical review. Renew Sust Energ Rev 66:631–653. https://doi.org/10.1016/j.rser.2016.07.015Google Scholar
  34. Agarwal VK, Sinclair JB (1997) Principles of seed pathology, 2ed edn. CRC, Boca Raton, p 538Google Scholar
  35. Ahmed FAS (1978) Studies on Fusarium basal rot disease of onion. M. Sc. Thesis. Fac. Agric.Google Scholar
  36. Akilandeswari P, Pradeep BV (2016) Exploration of industrially important pigments from soil fungi. Appl Microbiol Biotechnol 100:1631–1643. https://doi.org/10.1007/s00253-015-7231-8Google Scholar
  37. Alastruey-Izquierdo A, Cuenca-Estrella M, Monz’on A, Mellado E, Rodr’ıguez-Tudela JL (2008) Antifungal susceptibility profile of clinical Fusarium spp. isolates identified by molecular methods. J Antimicrob Chemother 61:805–809Google Scholar
  38. Alabouvette C, Olivain C, Migheli Q, and Steinberg C (2009) Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol 184:529–544Google Scholar
  39. Alfenore S, Molina-Jouve C (2016) Current status and future prospects of conversion of lignocellulosic resources to biofuels using yeast and bacteria. Process Biochem. https://doi.org/10.1016/j.procbio.2016.07.028
  40. Ali SS, Vidhale NN (2013) Protease production by Fusarium oxysporum in solid-state fermentation using rice bran. Am J Microbiol Res 1:45–47. https://doi.org/10.12691/ajmr-1-3-2Google Scholar
  41. Ali M, Salama A, Ali T (1973) Studies on the air fungal flora of Egypt. I. Effect of some environmental factors on the frequency of occurrence. Egypt J Microbiol 8:113–124Google Scholar
  42. Ali MI, Abu-Zinada AH, El-Mashharawi Z (1977) On the fungal flora of Saudi Arabia II. Seasonal fluctuation of fungi in the rhizosphere of some plants. Bull Fac Sci Riyad-Univ 8:203–214Google Scholar
  43. Almeida MN, Guimarães VM, Falkoski DL, Paes GBT, Ribeiro JI Jr, Visser EM, Alfenas RF, Pereira OL, Rezende ST (2014) Optimization of endoglucanase and xylanase activities from Fusarium verticillioides for simultaneous saccharification and fermentation of sugarcane bagasse. Appl Biochem Biotechnol 172:1332–1346. https://doi.org/10.1007/s12010-013-0572-9
  44. Aly AA (1978) Studies on flax caused by Fusarium oxysporum f. sp. lini. M. Sc. Thesis. Fac. Agric., Al-Azhar UniversityGoogle Scholar
  45. Amoah J, Ho S, Hama S, Yoshida A, Nakanishi A, Hasunuma T, Ogino C, Kondo A (2016) Converting oils high in phospholipids to biodiesel using immobilized Aspergillus oryzae whole-cell biocatalysts expressing Fusarium heterosporum lipase. Biochem Eng J 105:10–15. https://doi.org/10.1016/j.bej.2015.08.007Google Scholar
  46. Anasontzis GE, Christakopoulos P (2014) Challenges in ethanol production with Fusarium oxysporum through consolidated bioprocessing. Bioengineered 5:393–395. https://doi.org/10.4161/bioe.36328Google Scholar
  47. Andre C, Charmoille L (1999) Fusarium isolate and lipases, cutinases and enzyme compositions derived therefrom. USA US5990069AGoogle Scholar
  48. Andrews S, Pitt J (1986) Selective medium for isolation of Fusarium species and dematiaceous hyphomycetes from cereals. Appl Environ Microbiol 51:1235–1238Google Scholar
  49. Aoki T, O’Donnell K (1999) Morphological and molecular characterization of Fusarium pseudograminearum sp. nov., formerly recognized as the group 1 population of F. graminearum and PCR primers for its identification. Mycologia 91:597–609Google Scholar
  50. Aoki T, O’Donnell K, Ichikawa K (2001) Fusarium fractiflexum sp. nov. and two other species within the Gibberella fujikuroi species complex recently discovered in Japan that form aerial conidia in false heads. Mycoscience 42:461–478Google Scholar
  51. Arafa MK, Mohamed MS, Amein AM, Abd-Elrazik A (1986) Effect of certain crops preceding cumin on incidence of cumin Fusarium wilt. Assiut J Agr Sci 17(1):16–26Google Scholar
  52. Arianayagam S, Jayalakshmi P, Soo-Hoo TS (1986) Pulmonary aspergilloma. Case reports from Malaysia. Mycopathologica 93(3):151–3Google Scholar
  53. Ariyarathna IR, Karunarathne DN (2016) Microencapsulation stabilizes curcumin for efficient delivery in food applications. Food Packag Shelf Life 10:79–86. https://doi.org/10.1016/j.fpsl.2016.10.005Google Scholar
  54. Arnstein HRV, Cook AH, Lacey MS (1946) An antibacterial pigment from F. javanicum. Nature 157:333–337Google Scholar
  55. Arndt B, Studt L, Wiemann P, Osmanov H, Kleigrewe K, Köhler J, et al. (2015) Genetic engineering, high resolution mass spectrometry and nuclear magnetic resonance spectroscopy elucidate the bikaverin biosynthetic pathway in Fusarium fujikuroi. Fungal Genet Biol 84:26–36. https://doi.org/10.1016/j.fgb.2015.09.006.
  56. Ashour WE, Morsey AA, Ali MDH, Diab MMM (1973) Effect of temperature, moisture and aeration on the development of basal rot of onion during storage. Agric Res Rev 51:163Google Scholar
  57. Ashley JN, Hobbs BC, Raistrick H (1937) LV. Studies in the biochemistry of micro-organisms. LIII. The crystalline coloring matters of Fusarium culmorum (W. G. Smith) Sacc. and related forms. Biochemical J 31:385–397Google Scholar
  58. Asiedu JJ (1989) Processing tropical crops. A technological approach. The Macmillan Press, London and Basingstoke, p 266Google Scholar
  59. Aziz NH, Ferial ME, Azza AMS, Souzan MR (2007) Control of Fusarium moulds and fumonisin B1 in seeds by gamma-irradiation. Food Control 18(11):1337–1342Google Scholar
  60. Backhouse D, Burgess LW, Summerell BA (2001) Biogeography of Fusarium. In: Summerell BA, Leslie JF, Backhouse D, Bryden WL, Burgess LW (eds) Fusarium Paul E. Nelson Memorial Symposium. American Phytopathological Society Press, St. Paul, MN, pp 122–137Google Scholar
  61. Baeyens J, Kang Q, Appels L, Dewil R, Lv Y, Tan T (2015) Challenges and opportunities in improving the production of bio-ethanol. Prog Energy Combust Sci 47:60–88. https://doi.org/10.1016/j.pecs.2014.10.003Google Scholar
  62. Bagy MMK (1979) Some ecological studies on Egyptian soil fungi. M. Sc. Thesis. Faculty of Science, Assiut UniversityGoogle Scholar
  63. Bai GH, Desjardins AE, Plattner RD (2002) Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia 153:91–98Google Scholar
  64. Baker RA, Tatum JH, Nemec S Jr (1990) Antimicrobial activity of naphthoquinones from fusaria. Mycopathologia 111:9–15. https://doi.org/10.1007/bf02277294Google Scholar
  65. Barros DPC, Azevedo AM, Cabral JMS, Fonseca LP (2012) Optimization of flavor esters synthesis by Fusarium solani pisi cutinase. J Food Biochem 36:275–284. https://doi.org/10.1111/j.1745-4514.2010.00535.xGoogle Scholar
  66. Behera SS, Ray RC (2016) Solid state fermentation for production of microbial cellulases: recent advances and improvement strategies. Int J Biol Macromol 86:656–669. https://doi.org/10.1016/j.ijbiomac.2015.10.090Google Scholar
  67. Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26. https://doi.org/10.10338/já.2005.1Google Scholar
  68. Berger RG (2009) Biotechnology of flavours–the next generation. Biotechnol Lett 31:1651–1659. https://doi.org/10.1007/s10529-009-0083-5Google Scholar
  69. Bicas JL, Silva WS (2013a) Process of production and deriving pigment application of the fungus Fusarium oxysporum Brazil: BR102013015305Google Scholar
  70. Bicas JL, Silva WS (2013b) Processes of dyeing of fabrics and plastics using fungous pigments Brazil:BR102013027036Google Scholar
  71. Bicas J, Barros F, Wagner R (2008) Optimization of R-(+)-α-terpineol production by the biotransformation of R-(+)-limonene. J Ind Microbiol Biotechnol 35:1061–1070. https://doi.org/10.1007/s10295-008-0383-0Google Scholar
  72. Bicas JL, Dionísio AP, Pastore GM (2009) Bio-oxidation of terpenes: an approach for the flavor industry. Chem Rev 109:4518–4531. https://doi.org/10.1021/cr800190yGoogle Scholar
  73. Bicas J, de Quadros C, Néri-Numa I, Pastore G (2010a) Integrated process for co-production of alkaline lipase and R-(+)-α-terpineol by Fusarium oxysporum. Food Chem 120:452–456. https://doi.org/10.1016/j.foodchem.2009.10.037Google Scholar
  74. Bicas JL, Silva C, Dionísio AP, Pastore M (2010b) Biotechnological production of bioflavors and functional sugars. Ciênc Tecnol Aliment 30:7–18Google Scholar
  75. Boonla O, Kukongviriyapan U, Pakdeechote P, Kukongviriyapan V, Pannangpetch P, Prachaney P, Greenwald SE (2014) Curcumin improves endothelial dysfunction and vascular remodelling in 2K-1C hypertensive rats by raising nitric oxide availability and reducing oxidative stress. Nitric Oxide 42:44–53. https://doi.org/10.1016/j.niox.2014.09.001Google Scholar
  76. Boonyapranai K, Tungpradit R, Hieochaiphant S (2008) Optimization of submerged culture for the production of naphthoquinones pigment by Fusarium verticillioides. Chiang Mai J Sci 35:457–466Google Scholar
  77. Booth C (1971) The genus Fusarium. Commonwealth Mycological Institute, Kew, SurreyGoogle Scholar
  78. Booth C (1975) The present status of Fusarium taxonomy. Annu Rev Phytopathol 13:83–93Google Scholar
  79. Brakhage AA (2013) Regulation of fungal secondary metabolism. Natl Rev 11:21–32. https://doi.org/10.3389/fmicb.2014.00656Google Scholar
  80. Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22. https://doi.org/10.1016/j.fgb.2010.04.004Google Scholar
  81. Britiz H, Steenkamp ET, Coutinho TA, Wingfield DD, Marasas WFO, Wingfield MJ (2002) Two new species of Fusarium section Liseola associated with mango malformation. Mycologia 94:722–730Google Scholar
  82. Brown TR (2015) A techno-economic review of thermochemical cellulosic biofuel pathways. Bioresour Technol 178:166–176. https://doi.org/10.1016/j.biortech.2014.09.053Google Scholar
  83. Burdock GA (2010) Fenaroli’s handbook of flavor ingredients, sixth. CRC Press, Boca RatonGoogle Scholar
  84. Campbell CL, Neher DA (1996) Principles and practice of managing soilborne plant pathogens. APs Press, San. Paul, MN, pp 20–49Google Scholar
  85. Chabasse D, De Gentile L, Bouchara JP (1989) Pathogenicity of some Chrysosporium species isolated in France. Mycopathologia 106:171–177Google Scholar
  86. Chang DC, Grant GB, O’Donnell K, Wannemuehler KA, Noble-Wang J, Rao CY et al (2006) Multistate outbreak of Fusarium keratitis associated with use of a contact lens solution. JAMA 296:953–963. https://doi.org/10.1001/jama.296.8.953
  87. Chen Y-L, Mao W-J, Tao H-W, Zhu W-M, Yan M-X, Liu X, Guo T-T, Guo T (2015) Preparation and characterization of a novel extracellular polysaccharide with antioxidant activity, from the mangrove-associated fungus Fusarium oxysporum. Mar Biotechnol 17:219–228Google Scholar
  88. Chhaya U, Gupte A (2013) Effect of different cultivation conditions and inducers on the production of laccase by the litter-dwelling fungal isolate Fusarium incarnatum LD-3 under solid substrate fermentation. Ann Microbiol 63:215–223Google Scholar
  89. Christakopoulos P, Macris BJ, Kekos D (1989) Direct fermentation of cellulose to ethanol by Fusarium oxysporum. Enzyme Microb Technol II:236–239Google Scholar
  90. Christakopoulos P, Tzalas B, Mamma D, Stamatis H, Liadakis GN, Tzia C, Kekos D, Kolisis FN, Macris BJ (1998) Production of an esterase from Fusarium oxysporum catalysing transesterification reactions in organic solvents. Process Biochem 33:729–733. https://doi.org/10.1016/S0032-9592(98)00039-9Google Scholar
  91. Davey CB, Papavzas GC (1960) Effect of decomposing organic soil amendments and nitrogen on fungi in soil and bean rhizosphere. Trans Int Cong Soil Sci 7th Cong (Madison Wisc) Comm 111:551–557Google Scholar
  92. De Carvalho CCCR, da Fonseca MMR (2006) Biotransformation of terpenes. Biotechnol Adv 24:134–142. https://doi.org/10.1016/j.biotechadv.2005.08.004Google Scholar
  93. De Castro RJS, Sato HH (2013) Synergistic effects of agroindustrial wastes on simultaneous production of protease and α-amylase under solid state fermentation using a simplex centroid mixture design. Ind Crop Prod 49:813–821. https://doi.org/10.1016/j.indcrop.2013.07.002Google Scholar
  94. van der Schaft PH, ter BN, van den Bosch S, Cohen AM (1992) Fedbatch production of 2-heptanone by Fusarium poae. Appl Microbiol Biotechnol 36:709–711. https://doi.org/10.1007/bf00172179Google Scholar
  95. Deshmukh RR, Vidhale NN (2015) Effect of pH on the production of protease by Fusarium oxysporum using agroindustrial waste. Biosci Biotech Res Comm 8:78–83Google Scholar
  96. Deshmukh R, Mathew A, Purohit HJ (2014) Characterization of antibacterial activity of bikaverin from Fusarium sp. HKF15. J Biosci Bioeng 117:443–448. https://doi.org/10.1016/j.jbiosc.2013.09.017Google Scholar
  97. Desjardins AE, Proctor RH, Bai GH, McCormick SP, Shaner G et al (1996) Reduced virulence of trichothecene-nonproducing mutants of Gibberella zeae in wheat field tests. Mol Plant-Microbe Interact 9:775–781Google Scholar
  98. Desmond OJ, Manners JM, Stephens AE, Maclean DJ, Schenk PM et al (2008) The Fusarium mycotoxins deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defence responses in wheat. Mol Plant Pathol 9:435–445Google Scholar
  99. Dhake KP, Thakare DD, Bhanage BM (2013) Lipase: a potential biocatalyst for the synthesis of valuable flavour and fragrance ester compounds. Flavour Fragr J 28:71–83. https://doi.org/10.1002/ffj.3140Google Scholar
  100. Dhoro M (2010) Identification and differentiation of Fusarium species using selected molecular methods. Master of Philosophy, Department of Biochemistry, University of ZimbabweGoogle Scholar
  101. Ding L, Dahse HM, Hertweck C (2012) Cytotoxic alkaloids from Fusarium incarnatum associated with the mangrove tree Aegiceras corniculatum. J Nat Prod 75:617–621. https://doi.org/10.1021/np2008544Google Scholar
  102. Ding TZ, Cai L, Dong JW (2016) Fusarium sp fermentation of Fusarium through a solid one creation of a new antimicrobials sambacide method China:CN106117293Google Scholar
  103. Dong JW, Cai L, Li XJ, Duan RT, Shu Y, Chen FY, Wang JP, Zhou H, Ding ZT (2016) Production of a new tetracyclic triterpene sulfate metabolite sambacide by solid-state cultivated Fusarium sambucinum B10.2 using potato as substrate. Bioresour Technol 218:1266–1270. https://doi.org/10.1016/j.biortech.2016.07.014Google Scholar
  104. Du L, Lou L (2009) PKS and NRPS release mechanisms. Nat Prod Rep 27:255–278. https://doi.org/10.1039/b912037hGoogle Scholar
  105. Dufossé L, Galaup P, Yaron A, Arad SM, Blanc P, Murthy KNC, Ravishankar GA (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci Technol 16:389–406. https://doi.org/10.1016/j.tifs.2005.02.006Google Scholar
  106. Duran N, Teixeira MFS, De Conti R, Esposito E (2002) Ecological friendly pigments from fungi. Crit Rev Food Sci Nutr 42:53–66. https://doi.org/10.1080/10408690290825457Google Scholar
  107. Dvorska JE, Surai PF, Speake BK, Sparks NHC (2001) Effect of the mycotoxin aurofusarin on the antioxidant composition and fatty acid profile of quail eggs. Br Poult Sci 42:643–649. https://doi.org/10.1080/00071660120088470Google Scholar
  108. Dvorska JE, Surai PF, Speake BK, Sparks NHC (2002) Antioxidant systems of the developing quail embryo are compromised by mycotoxin aurofusarin. Comp Biochem Physiol C Toxicol Pharmacol 131:197–205. https://doi.org/10.1016/s1532-0456(02)00006-6Google Scholar
  109. Edel-Hermann V, Gautheron N, Mounier A, Steinberg C (2015) Fusarium diversity in soil using a specific molecular approach and a cultural approach. J Microbiol Methods 111:64–71. https://doi.org/10.1016/j.mimet.2015.01.026Google Scholar
  110. El-Abyad MS, Ismail IK (1976) Seasonal variation of fungistasis in Egyptian soils. Egypt J Bot 19:63–75Google Scholar
  111. El-Bramawy MAS (2006) Inheritance of resistance to Fusarium wilt in some sesame crosses under field conditions. Plant Prot Sci 42(3):99–105Google Scholar
  112. El-Bramawy MASA, Abdel-Wahid OA (2009) Evaluation of resistance of selected sesame (Sesamum indicum) genotypes to Fusarium wilt disease caused by Fusarium oxysporum f.sp. sesami. Tunis J Plant Prot 4(1):29–39Google Scholar
  113. El-Bramawy MAS, OA A-W (2007) Identification of genetic resources for resistance to Fusarium wilt, charcoal root rot and Rhizoctonia root rot among sesame (Sesamum indicum L.) germ-plasm. Afr Crop Sci Conf Proc 8:1893–1900Google Scholar
  114. El-Bramawy MAS, Shaban WI (2007) Nature of gene action for yield, yield components and major diseases resistance in sesame (Sesamum indicum L.). J Agric Biol Sci 396:821–826Google Scholar
  115. El-Hissy FT, Abdel-Hafez SI, Abdel-Kader MI (1980) Rhizosphere fungi of five plants in Egypt. Z Allg Mikrobiol 20(3):177–184Google Scholar
  116. El-Kady A, Abdel-Hafez SII, El-Maraghy SS (1982) Contribution to the fungal flora of cereal grains in Egypt. Mycopathologia 77:103–109Google Scholar
  117. El-Maghraby OM, El-Kady IA, Soliman S (1995) Mycoflora and Fusarium toxins of three types of corn grains in Egypt with special reference to production of trichothecene-toxins. Microbiol Res 150(3):225–232Google Scholar
  118. El-Mohamedy RSR (2004) Control of Fusarium root rot disease on mandarin by soil amendment with Trichoderma harzianum grown on bagasse. J Agric Sci 29(1):83–95Google Scholar
  119. El-Mohamedy RSR, Abd Alla MA, Badiaa RI (2006) Soil amendment and seed bio-priming treatments as alternative fungicides for controlling root rot diseases on cowpea plants in Nobaria Province. Res J Agric Biol Sci 2(6):391–398Google Scholar
  120. El-Nagerabi SAF, Elshafie AE (2000) Incidence of seed-borne fungi and aflatoxins in Sudanese lentil seeds. Mycopathologia 149:151–156Google Scholar
  121. El-Said AHM, Abdel-Hafez SII (1995) Seasonal variation of fungi above banana fields in Qena, Upper Egypt. Cryptogam Mycol 16(2):101–109Google Scholar
  122. Embaby EM, Abdel-Galil MM (2006) Seed borne fungi and mycotoxins associated with some legume seeds in Egypt. J Appl Sci Res 2(11):1064–1071Google Scholar
  123. Fandohan P, Gnonlonfin B, Hell K, Marssas WFO, Wingfield MJ (2005) Natural occurrence of Fusarium and subsequent fumonisin contamination in preharvest and stored maize in Benin, West Africa. Int J Food Microbiol 99:173–183Google Scholar
  124. FAO (2002) FAOSTAT database. Food and Agricultural Organisation, Roma, ItalyGoogle Scholar
  125. Farhangi B, Alizadeh AM, Khodayari H, Khodayari S, Dehghan MJ, Khori V, Heidarzadeh A, Khaniki M, Sadeghiezadeh M, Najafi F (2015) Protective effects of dendrosomal curcumin on an animal metastatic breast tumor. Eur J Pharmacol 758:188–196. https://doi.org/10.1016/j.ejphar.2015.03.076Google Scholar
  126. Fathi SM, El-Husseini TM, Abu-Zinada AH (1975) Seasonal variation of soil microflora and their activities in Riyad region. II. Fungi. Bull Fac Sci, Riyad Univ 7:17–30Google Scholar
  127. Felixtina EJ (1988) Seed-borne fungi of sesame (Sesamum indicum L) in Sierra Leone and their potential aflatoxin/mycotoxin production. Mycopathologia 104:123–127Google Scholar
  128. Feron G, Waché Y (2006) Microbial biotechnology of food flavor production. In: Paliyath G, Pometto A, Levin R, Shetty K (eds) Food biotechnology. CRC Press Taylor and Franc, New York, pp 407–442Google Scholar
  129. Feron G, Bonnarme P, Durand A (1996) Prospects for the microbial production of food flavours. Trends Food Sci Technol 7:285–293. https://doi.org/10.1016/0924-2244(96)10032-7Google Scholar
  130. Fincher F (1963) Seasonal fluctuation of fungi in randan wood. Trans Br Mycol Soc 46(2):298Google Scholar
  131. Fisher NL, Marasas WFO, Toussoum TA (1983) Taxonomic important of microconidial chains in Fusarium section Liseola and effects of water potential on their generation. Mycologia 75:693–698Google Scholar
  132. Foster RC (1986) The ultrastructure of rhizoplane and rhizosphere. Annu Rev Phytopathol 24:211–234Google Scholar
  133. Fox EM, Howlett B (2008) Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol 11:481–487Google Scholar
  134. Frandsen RJN, Rasmussen SA, Knudsen PB, Uhlig S, Petersen D, Lysøe E, Gotfredsen CH, Giese H, Larsen TO (2016) Black perithecial pigmentation in Fusarium species is due to the accumulation of 5-deoxybostrycoidin-based melanin. Sci Rep 6:26206. https://doi.org/10.1038/srep26206Google Scholar
  135. Frey D, Oldfield RJ, Bridger RC (1979) A colour Atlas of pathogenic fungi. Wolfe Med. Pub. Ltd, Michigan, London, p 168Google Scholar
  136. Fu Y, Gao R, Cao Y, Guo M, Wei Z, Zhou E, Li Y, Yao M, Yang Z, Zhang N (2014) Curcumin attenuates inflammatory responses by suppressing TLR4-mediated NF-kB signaling pathway in lipopolysaccharide-induced mastitis in mice. Int Immunopharmacol 20:54–58. https://doi.org/10.1016/j.intimp.2014.01.024Google Scholar
  137. Furusawa M, Hashimoto T, Noma Y, Asakawa Y (2005) Biotransformation of citrus aromatics nootkatone and valencene by microorganisms. Chem Pharm Bull 53:1423–1429. https://doi.org/10.1248/cpb.53.1423Google Scholar
  138. Gams W, Domsch KH (1969) The spatial and seasonal distribution of microscopic fungi in arable soils. Trans Br Mycol Soc 52:301–308Google Scholar
  139. Gams W, O’Donnell K, Schroers HJ, Christensen M (1998) Generic classification of some more hyphomycetes with solitary conidia borne on phialides. Can J Bot 76:1570–1583Google Scholar
  140. Gams W, Klamer M, O’Donnell K (1999) Fusarium miscanthi sp. nov. from Miscathus litter. Mycologia 91:263–268Google Scholar
  141. Geiser DM, Juba JH, Wang B, Jeffers SN (2001) Fusarium hostae sp. nov., a relative of F. redolans with a Gibberella teleomorph. Mycologia 93:670–678Google Scholar
  142. Gerlach W, Nirenberg H (1982) The genus Fusarium-A pictorial atlas. Mitteilungen aus der Biologischen Bundesanstalt Fur Land- und Forstwirtschaft (Berlin-Dahlem) 209:1–405Google Scholar
  143. Gessler NN, Egorova AS, Belozerskaya TA (2013) Fungal anthraquinones. Appl Biochem Microbiol 49:85–99. https://doi.org/10.1134/s000368381302004xGoogle Scholar
  144. Gherbawy Y, Maghraby T, Yassmin S (2006) Seasonal variation of Fusarium species in wheat fields in Upper Egypt. Phytopathol Plant Protect 39(5):365–377Google Scholar
  145. Gilbert J, Tekauz A, Woods SM (1997) Effect of storage on viability of Fusarium head blight affected spring wheat seed. Plant Dis 81:159–162Google Scholar
  146. Gower EW, Keay LJ, Oechsler RA, Iovieno A, Alfonso EC et al (2010) Trends in fungal keratitis in the United States, 2001 to 2007. Ophthalmology 117:2263–2267Google Scholar
  147. Grabarczyk M (2012) Fungal strains as catalysts for the biotransformation of halolactones by hydrolytic dehalogenation with the dimethylcyclohexane system. Molecules 17:9741–9753. https://doi.org/10.3390/molecules17089741Google Scholar
  148. Graham HD (1980) The safety of foods. AVI Publishing Company, Inc, Westport, CTGoogle Scholar
  149. Gregory PH (1973) Microbiology of the atmosphere. Leonard Hill, Aylsbury, LondonGoogle Scholar
  150. Guarro J (2013) Fusariosis, a complex infection caused by a high diversity of fungal species refractory to treatment. Eur J Clin Microbiol Infect Dis 32:1491–1500. https://doi.org/10.1007/s10096-013-1924-7Google Scholar
  151. Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agroresidues: a review. Renew Sust Energ Rev 41:550–567. https://doi.org/10.1016/j.rser.2014.08.032Google Scholar
  152. Hagedorn S, Kaphammer B (1994) Microbial biocatalysis in the generation of flavor and fragrance chemicals. Annu Rev Microbiol 48:773–780. https://doi.org/10.1146/annurev.mi.48.100194.004013Google Scholar
  153. Hama S, Tamalampudi S, Suzuki Y, Yoshida A, Kufuda H, Kondo A (2008) Preparation and comparative characterization of immobilized Aspergillus oryzae expressing Fusarium heterosporum lipase for enzymatic biodiesel production. Appl Microbiol Biotechnol 81:637–645. https://doi.org/10.1007/s00253-008-1689-6Google Scholar
  154. Hanson JR (2008) The chemistry of fungi. The Royal Society of Chemistry, Cambridge, pp 1–114Google Scholar
  155. Harish BS, Ramaiah MJ, Uppulur KB (2015) Bioengineering strategies on catalysis for the effective production of renewable and sustainable energy. Renew Sust Energ Rev 51:533–547. https://doi.org/10.1016/j.rser.2015.06.030Google Scholar
  156. Hasan HAH (2002) Gibberellin and auxin production by plant root-fungi and their biosynthesis under salinity-calcium interaction. Rostlinna v Roba 48(3):101–106Google Scholar
  157. Hamilton MA, Knorr MS, Cajori RA (1953) Experimental studies of an antibiotic derived from Fusarium bostrycoides. Antibiotics and chemotherapy 3:853Google Scholar
  158. Hering O, Nireberg HI (1995) Differentiation of Fusarium sambucinum Fuckel sensu lato and related species by RAPD PCR. Mycopathologia 129:159–164Google Scholar
  159. Higgy AH, Abd-Elrazik AA, Rushdi MH (1978) Occurrence of pokkah boeng disease of sugarcane in ARE. Plant Pathol 1:473–481Google Scholar
  160. de Hoog GS, Gauarro J, Gene J, Figueras MJ (2000) Atlas of clinical fungi, 2nd edn. Universitat Rovira I Virgili, ReusGoogle Scholar
  161. Huang Z, Yang R, Guo Z, She Z, Lin Y (2010) New anthraquinone derivative produced by cultivation of mangrove endophytic fungus Fusarium sp. ZZF60 from the South China Sea. Chin J Appl Chem 27:394–395Google Scholar
  162. Hussein FN, Abd-Elrazik A, Darweish FA, Rushdi MH (1977) Survey of storage diseases of onions and their incidents in Upper Egypt. J Phytopathol 9:15–21Google Scholar
  163. Husson F, Couturier A, Kermasha S, Belin JM (1998a) Induction and localization of a lipoxygenase from Fusarium proliferatum. J Mol Catal B Enzym 5:159–163. https://doi.org/10.1016/S1381-1177(98)00026-5Google Scholar
  164. Husson F, Pagot Y, Kermasha S, Belin JM (1998b) Fusarium proliferatum: induction and intracellular location of a lipoxygenase. Enzym Microb Technol 23:42–48. https://doi.org/10.1016/S0141-0229(98)00009-XGoogle Scholar
  165. Ibrahim SRM, Elkhayat ES, Mohamed GA, Fat’hi SM, Ross SA (2016a) Fusarithioamide A, a new antimicrobial and cytotoxic benzamide derivative from the endophytic fungus Fusarium chlamydosporium. Biochem Biophys Res Commun 479:211–216. https://doi.org/10.1016/j.bbrc.2016.09.041Google Scholar
  166. Ibrahim SRM, Abdallah HM, Mohamed GA, Ross SA (2016b) Integracides H-J: new tetracyclic triterpenoids from the endophytic fungus Fusarium sp. Fitoterapia 112:161–167. https://doi.org/10.1016/j.fitote.2016.06.002Google Scholar
  167. Ibrahim SRM, Mohamed GA, Ross AS (2016c) Integracides F and G:new tetracyclic triterpenoids from the endophytic fungus Fusarium sp. Phytochem Lett 15:125–130. https://doi.org/10.1016/j.phytol.2015.12.010Google Scholar
  168. Ilgen P, Maier F, Sch¨afer W (2008) Trichothecenes and lipases are host-induced and secreted virulence factors of Fusarium graminearum. Cereal Res Commun 36:421–428Google Scholar
  169. Ismail MA, Abdel-Hafez SII, Moharram AM (2002) Aeromycobiota of western desert of Egypt. Asian J Sci Technol 3(1):1–9Google Scholar
  170. Ismail MA, Taligoola HK, Ssebukyu EK (2003) Mycobiota associated with maize grains in Uganda with special reference to aflatoxigenic Aspergilli. J Trop Microbiol 2:17–26Google Scholar
  171. Ismail MA, Abdel-Hafez SII, Nemmat AH, Nivien AN (2009) Seasonal fluctuation of Fusarium species in cultivated soil, with a new record species to Egypt. Assiut Univ J Bot, The First International Conference of Biological Sciences, Spec. Publ. No 1:12–128Google Scholar
  172. Jackson M, Andersen C, Beier L, Friis EP, Toscano MDGP et al (2013) Cleaning compositions comprising amylase variants reference to a sequence listing. France EP2540825A2Google Scholar
  173. Jadhav DD, Patil HS, Chaya PS, Thulasiram HV (2016) Fungal mediated kinetic resolution of racemic acetates to (R)-alcohols using Fusarium proliferatum. Tetrahedron Lett 57:4563–4567. https://doi.org/10.1016/j.tetlet.2016.08.084Google Scholar
  174. Kasprowicz MJ, Gorczyca A, Frandsen RJ (2013) The effect of nanosilver on pigments production by Fusarium culmorum (W.G.Sm) Sacc. Pol J Microbiol 62:365–372Google Scholar
  175. Katznelson H, Lochhead AG, Timonin MI (1948) Soil microorganisms and rhizosphere. Bot Rev 14:543–587Google Scholar
  176. Keller NP, Turner G, Bennett J (2005) Fungal secondary metabolism from biochemistry to genomics. Nat Rev Microbiol 3:937–947. https://doi.org/10.1038/nrmicro1286Google Scholar
  177. Khalifa MMA (1997) Studies on root-rot and wilt diseases of sesame (Sesamum indicum L). M. Sc. Thesis, Faculty of Agriculture, Zagazig University, Egypt, p 158Google Scholar
  178. Khoa LV, Hatai K, Aoki T (2004) Fusarium incarnatum isolated from black tiger shrimp, Penaeus monodon Fabricius, with black gill disease cultured in Vietnam. J Fish Dis 27:507–515. https://doi.org/10.1111/j.1365-2761.2004.00562.xGoogle Scholar
  179. Kimura Y, Takashi H, Nakajima H (1981) Isolation, Identification and Biological Activities of 8-O-Methyljavanicin Produced by Fusarium solani. Agric Biol Chem 45(11):2653–2654Google Scholar
  180. Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351. https://doi.org/10.1016/s0958-1669(02)00328-2Google Scholar
  181. Klittich CJR, Leslie JF, Nelson PE, Marasas WFO (1997) Fusarium thapsinum (Gibberella thapsina): a new species in section Liseola from sorghum. Mycologia 89:643–652Google Scholar
  182. Koda R, Numata T, Hama S, Tamalampudi S, Nakashima K, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Ethanolysis of rapeseed oil to produce biodiesel fuel catalyzed by Fusarium heterosporum lipase expressing fungus immobilized. J Mol Catal B Enzym 66:101–104. https://doi.org/10.1016/j.molcatb.2010.04.001Google Scholar
  183. Kossou DK, Aho N (1993) Stockage et conservation des grains alimentaires tropicaux: principes et pratiques. Les Editions du Flamboyant, Cotonou, Benin, p 125Google Scholar
  184. Krings U, Berger RG (1998) Biotechnological production of flavours and fragrances. Appl Microbiol Biotechnol 49:1–8. https://doi.org/10.1007/s002530051129Google Scholar
  185. Kundu A, Saha S, Walia S, Dutta TK (2016) Anti-nemic secondary metabolites produced by Fusarium oxysporum f.sp.ciceris. J Asia Pac Entomol 19:631–636. https://doi.org/10.1016/j.aspen.2016.06.003Google Scholar
  186. Kurobane I, Zaita N, Fukuda A (1986) New metabolites of Fusarium martii related to dihydrofusarubin. J Antibiot 39:205–214. https://doi.org/10.7164/antibiotics.39.205Google Scholar
  187. Lacey J (1975) Air-borne spores in pastures. Trans Br Mycol Soc 2:265–281Google Scholar
  188. Lale GJ, Gadre RV (2016) Production of bikaverin by a Fusarium fujikuroi mutant in submerged cultures. AMB Express 6:34. https://doi.org/10.1186/s13568-016-0205-0Google Scholar
  189. Lant NJ, Erlandsen L, Hansen CV, Vind J, Svendsen A, Sonksen CP (2013) Compositions and methods for surface treatment with lipases. France WO 2013116261A2Google Scholar
  190. Lennartsson PR, Erlandsson P, Taherzadeh MJ (2014) Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresour Technol 165:3–8. https://doi.org/10.1016/j.biortech.2014.01.127Google Scholar
  191. Leslie JF (2001) Population genetics level problems in the Gibberella fujikuroi species complex. Pages 113-121 in: Fusarium: Paul E. Nelson Memorial Symposium. In: Summerell BA, Leslie JF, Backhouse D, Bryden WL, Burgess LW (eds) . American Phytopathological Society, St. Paul, MNGoogle Scholar
  192. Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell Publishing, Ames, IowaGoogle Scholar
  193. Li P, Luo H, Meng J, Sun W, Wang X, Lu S, Peng Y, Zhou L (2014) Effects of oligosaccharides from endophytic fusarium oxysporum Dzf17 on activities of defense-related enzymes in dioscorea zingiberensis suspension cell and seedling cultures. Electron J Biotechnol 17:156–161Google Scholar
  194. Lighthart B, Frisch A (1976) Estimate of viable airborne microbes downwind from a point source. Appl Environ Microbiol 31:700–701Google Scholar
  195. Logrieco A, Peterson SW, Bottalico A (1995a) Phylogenetic relationship within Fusarium sambucinum Fuckel sensu lato determined from ribosomal RNA sequences. Mycopathologia 129:152–158Google Scholar
  196. Lazzaro I, Susca A, Mulè G, Ritieni A, Ferracane R, Marocco A, Battilani P (2012) Effects of temperature and water activity on FUM2 and FUM21 gene expression and fumonisin B production in Fusarium verticillioides. European Journal of Plant Pathology http://dx.doi.org/10.1007/s10658-012-0045-y
  197. Lopes FC, Tichota DM, Pereira JQ, Segalin J, Rios AO, Brandelli A (2013) Pigment production by filamentous fungi on agro-industrial byproducts: an eco-friendly alternative. Appl Biochem Biotechnol 171:616–625. https://doi.org/10.1007/s12010-013-0392-yGoogle Scholar
  198. Logrieco A, Moretti A, Ritieni A, Bottalico A, Corda P (1995b) Occurrence and toxigenicity of Fusarium proliferatum from preharvest maize ear rot, and associated mycotoxins, in Italy. Plant Disease 79:727–731Google Scholar
  199. Maghazy SMN (1979) Studies on keratinolytic fungi in Egyptian soil. M. Sc. Thesis. Bot. Dept., Faculty of Science, Assiut UniversityGoogle Scholar
  200. Mahapatra S, Banerjee D (2012) Structural elucidation and bioactivity of a novel exopolysaccharide from endophytic Fusarium solani SD5. Carbohydr Polym 90:683–689Google Scholar
  201. Mahapatra S, Banerjee D (2013a) Fungal exopolysaccharide: production, composition and applications. Microbiol Insights 6:1–16Google Scholar
  202. Mahapatra S, Banerjee D (2013b) Evaluation of in vitro antioxidant potency of exopolysaccharide from endophytic Fusarium solani SD5. Int J Biol Macromol 53:62–66Google Scholar
  203. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: a short review. Life Sci 78:2081–2087. https://doi.org/10.1016/j.lfs.2005.12.007Google Scholar
  204. Maitan-Alfenas GP, Visser EM, Guimarães VM (2015) Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr Opin Food Sci 1:44–49. https://doi.org/10.1016/j.cofs.2014.10.001Google Scholar
  205. Mäkelä MR, Donofrio N, de Vries RP (2014) Plant biomass degradation by fungi. Fungal Genet Biol 72:2–9. https://doi.org/10.1016/j.fgb.2014.08.010Google Scholar
  206. Makkonen J, Jussila J, Koistinen L, Paaver T, Hurt M, Kokko H (2013) Fusarium avenaceum causes burn spot disease syndrome in noble crayfish (Astacus astacus). J Invertebr Pathol 113:184–190. https://doi.org/10.1016/j.jip.2013.03.008Google Scholar
  207. Mandeel Q, Baker R (1991) Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of nonpathogenic Fusarium oxysporum. Phytopathology 81(4):462–469Google Scholar
  208. Mapari SAS, Nielsen KF, Larsen TO, Frisvad JC, Meyer AS, Thrane U (2005) Exploring fungal biodiversity for the production of water soluble pigments as potential natural food colorants. Curr Opin Biotechnol 16:231–238. https://doi.org/10.1016/j.copbio.2005.03.004Google Scholar
  209. Mapari SAS, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future nature food colorants? Trends Biotechnol 28:300–307. https://doi.org/10.1016/j.tibtech.2010.03.004Google Scholar
  210. Marasas WFO (2001) Discovery and occurrence of the fumonisins: a historical perspective. Environ Health Perspect 109:239–243Google Scholar
  211. Marasas WFO, Rheeder JP, Lamprecht SC, Zeller KA, Leslie JF (2001) Fusarium anadiyazi sp. nov., a new species from sorghum. Mycologia 93:1203–1210Google Scholar
  212. Maróstica MR, Pastore GM (2007) Production of R-(+)-α-terpineol by the biotransformation of limonene from orange essential oil, using cassava waste water as medium. Food Chem 101:345–350. https://doi.org/10.1016/j.foodchem.2005.12.056Google Scholar
  213. Martins N, Roriz CL, Morales P, Barros L, Ferreira ICFR (2016) Food colorants: challenges, opportunities and current desires of agroindustries to ensure consumer expectation and regulatory practices. Trends Food Sci Technol 52:1–15. https://doi.org/10.1016/j.tifs.2016.03.009Google Scholar
  214. Maude RB (1996) Seed-borne diseases and their control. CAB International, Cambridge, p 280Google Scholar
  215. Mazen MB, Shaban GM (1983) Air-borne fungi of wheat field in Egypt. Qatar Univ Sci Bull 3:131–139Google Scholar
  216. Mazen MB, Moubasher AH, Abdel-Hafez AII (1982) Studies on the genus Fusarium in Egypt. IV. Seasonal fluctuations of air-borne fungi with special reference to Fusarium. Bull Fac Sci, Assiut Univ 11(1):95–103Google Scholar
  217. Mazen MB, Moubasher AH, Abdel-Hafez AII (1991) Ecological studies on the genus Fusarium in Egyptian soils. Bull Fac Sci, Assiut Univ 20(1-D):73–87Google Scholar
  218. Medentsev AG, Arinbasarova AY, Akimenko VK (2005) Biosynthesis of naphthoquinone pigments by fungi of the genus Fusarium. Appl Biochem Microbiol 41:503–507. https://doi.org/10.1007/s10438-005-0091-8Google Scholar
  219. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energy Combust Sci 38:522–550. https://doi.org/10.1016/j.pecs.2012.02.002Google Scholar
  220. Misiek M, Hoffmeister D (2007) Fungal genetics, genomics, and secondary metabolites in pharmaceutical sciences. Planta Med 73:103–115. https://doi.org/10.1016/j.fgb.2010.04.004Google Scholar
  221. Mohamed MS, Sellam MA, Abd-Alrazik A, Rushdi MH (1981) Effect of root exudates of different plants of certain crop rotations on the incitants of tomato damping-off and Fusarium basal rot of onion. Egypt J Phytopathol 13(1–2):41–50Google Scholar
  222. Mohamed MS, Sellam MA, Abd-Elrazik A, Rushdi MH (1982) Effect of crop rotation on tomato damping-off and onion basal rot as well on the populations of their mycopathogens and Bacillus subtilis in soil. Anzeiger Schadlingskde, Pflanzenschutz, Umweltschutz 55:181–184Google Scholar
  223. Molina G, Pessôa MG, Pimentel MR, Pelissari FM, Bicas JL, Pastore GM (2014) Production of natural flavor compounds using monoterpenes as substrates. In: Hu J (ed) New developments in terpene research, 1ed edn. Nova Publishers, New York, pp 1–24Google Scholar
  224. Molina G, Bution ML, Bicas JL, Dolder MAH, Pastore GM (2015) Comparative study of the bioconversion process using R-(+)- and S-(–)-limonene as substrates for Fusarium oxysporum 152B. Food Chem 174:606–613. https://doi.org/10.1016/j.foodchem.2014.11.059Google Scholar
  225. Morsy KMM (2005) Induced resistance against damping-off, root rot and wilt diseases of lentil. Egyptian Journal of Phytopathology 33:53–63Google Scholar
  226. Moubasher AH (1993) Soil fungi of Qatar and other Arab countries. The Scientific and Applied Research Center, University of Qatar, Doha, QatarGoogle Scholar
  227. Moubasher AH, Abdel-Hafez SI (1978a) Study on the mycoflora of Egyptian soils. Mycopathologia 63(1):3–10Google Scholar
  228. Moubasher AH, Abdel-Hafez SI (1978b) Further study on seasonal fluctuations of Egyptian soil fungi. Mycopathologia 63(1):11–19Google Scholar
  229. Moubasher AH, El-Dohlob SM (1970) Seasonal fluctuation of Egyptian soil fungi. Trans Br Mycol Soc 54:45–51Google Scholar
  230. Moubasher AH, Moustafa AF (1970) A survey of Egyptian soil fungi with special reference to Aspergillus, Penicillium and Penicillium related genera. Trans Br Mycol Soc 54(1):35–44Google Scholar
  231. Moubasher AH, Moustafa AF (1974) Air-borne fungi at Assiut. Egypt J Bot 17:135–149Google Scholar
  232. Moubasher AH, Elnaghy MA, Abdel-Hafez SII (1972) Studies on the fungus flora of three grains in Egypt. Mycopathol Mycol Appl 47(3):261–274Google Scholar
  233. Moubasher AH, El-Hissy FT, Abdel-Hafez SII, Hassan SKM (1979) The mycoflora of peanuts in Egypt. Mycopathologia 68(1):39–46Google Scholar
  234. Moubasher AH, Abdel-Fattah HM, Swelium MA (1981) Studies on air-borne fungi at Qena. I Seasonal fluctuations. Z Allg Mikrobiol 21(3):247–253Google Scholar
  235. Moubasher AH, Abdel-Fattah HM, Swelium MA (1982) Studies on air-borne fungi at Qena. IV Effect of wind velocity on total counts. Mycopathologia 80:39–42Google Scholar
  236. Moubasher AH, Mazen MB, Abdel-Hafez AII (1984) Studies on the genus Fusarium in Egypt in rhizoplane of five plants. Mycopathologia 85(3):161–165Google Scholar
  237. Moubasher AH, Abdel-Hafez SI, El-Maghraby OMO (1988) Seasonal fluctuation soil of Wadi Bir-El-Ain in the eastern desert of Egypt. Nat Monspel Ser Bot 9(52):57–70Google Scholar
  238. Moubasher AH, Abdel-Hafez SII, Bagy MMK, Abdel-Satar MA (1990) Halophilic and halotolerant fungi in cultivated, desert and salt marsh soils from Egypt. Mycologica 2:65–81Google Scholar
  239. Müller M, Dirlam K,Wenk HH, Berger RG, Krings U, Kaspera R (2005) Method for the production of flavor-active terpenes. Germany WO 2005078110:A1Google Scholar
  240. Munkvold GP, Desjardins AE (1997) Fumonisins in maize. Can we reduce their occurrence? Plant Dis 81:556–564Google Scholar
  241. Nafady NA (2008) Ecological, physiological and taxonomical studies on the genus Fusarium in Egypt. MSc thesis, Faculty of Science, Assiut University, EgyptGoogle Scholar
  242. Nagia FA, EL-Mohamedy RSR (2007) Dyeing of wool with natural anthraquinone dyes from Fusarium oxysporum. Dyes Pigments 75:550–555. https://doi.org/10.1016/j.dyepig.2006.07.002Google Scholar
  243. Nash SN, Snyder WC (1962) Quantitative estimations by plate counts of propagules of the bean rot Fusarium in field soils. Phytopathology 52:567–572Google Scholar
  244. Neergaard P (1977) In: Nelson PE, Toussoun TA (eds) Seed pathology. Macmillan, LondonGoogle Scholar
  245. Nelson PE, Toussoum TA, Marasas WFO (1983) Fusarium species an illustrated manual for identification. The Pennsylvania State University Press, LondonGoogle Scholar
  246. Nelson PE, Desjardins AE, Plattner RD (1993) Fumonisins, mycotoxins produced by Fusarium species: biology, chemistry, and significance. Annu Rev Phytopathol 31:233–252. https://doi.org/10.1146/annurev.py.31.090193.001313Google Scholar
  247. Nielsen RI, Aaslyng DA, Jensen GW, Schneider P (1994) Endoprotease from Fusarium oxysporum DSM 2672 for use in detergents. USA US5288627AGoogle Scholar
  248. Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68. https://doi.org/10.1016/j.pecs.2010.01.003Google Scholar
  249. Nirenberg HI (1976) Untersuchungen uber die morphologische und biologische Differenzierung in der Fusarium Sektion Liseola. Mitt Biol Bund Land-Forst (Berlin-Dahlem) 169:1–117Google Scholar
  250. Nirenberg HI, O’Donnell K (1998) New Fusarium species and combinations within the Gibberella fujikuroi species complex. Mycologia 90:434–458Google Scholar
  251. Nirmaladevi D, Venkataramana M, Chandranayaka S, Ramesha A, Jameel NM, Srinivas C (2014) Neuroprotective effects of bikaverin on H2O2-induced oxidative stress mediated neuronal damage in SH-SY5Y cell line. Cell Mol Neurobiol 34:973–985. https://doi.org/10.1007/s10571-014-0073-6Google Scholar
  252. O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. P roc Natl Acad Sci USA 95:2044–2049Google Scholar
  253. O’Donnell K, Nirenberg HI, Aoki T, Cigelink E (2000) A multigene philology of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species. Mycoscience 41:61–78Google Scholar
  254. Olajuyigbe FM, Nlekerem CM, Ogunyewo OA (2016) Production and characterization of highly thermostable β-glucosidase during the biodegradation of methyl cellulose by Fusarium oxysporum. Biochem Res Int 2016:1–8. https://doi.org/10.1155/2016/3978124Google Scholar
  255. Oliveira BH, Coradi GV, Attili-Angelis D, Scauri C, Luques AHPG, Barbosa AM, Dekker RFH, Neto PO, Lima VMG (2013) Comparison of lipase production on crambe oil and meal by Fusarium sp. (Gibberella fujikuroi complex). Eur J Lipid Sci Technol 115:1413–1425. https://doi.org/10.1002/ejlt.201300087Google Scholar
  256. Omar AAW, Abdul Wahid FM, Amal MM (1996) Fungal population in the atmosphere of Ismailia City. Aerobiologia 12:249–255Google Scholar
  257. Osama AM (2007) Integrated control of tomato wilts disease caused by Fusarium oxysporum f. sp. lycopersici. Thesis. Faculty of Agriculture, Assiut, UniversityGoogle Scholar
  258. Palmero D, Iglesias C, de Cara M, Lomas T, Santos M, Tello JC (2009) Species of Fusarium isolated from river and sea water of southeastern spain and pathogenicity on four plant species. Plant Dis 93:377–385. https://doi.org/10.1094/PDIS-93-4-0377Google Scholar
  259. Panagiotou G, Kekos D, Macris BJ, Christakopoulos P (2003) Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Ind Crop Prod 18:37–45. https://doi.org/10.1016/S0926-6690(03)00018-9Google Scholar
  260. Panagiotou G, Christakopoulos P, Olsson L (2005) Simultaneous saccharification and fermentation of cellulose by Fusarium oxysporum F3-growth characteristics and metabolite profiling. Enzym Microb Technol 36:693–699. https://doi.org/10.1016/j.enzmictec.2004.12.029Google Scholar
  261. Panagiotou G, Topakas E, Moukouli M, Christakopoulos P, Olsson L (2011) Studying the ability of Fusarium oxysporum and recombinant Saccharomyces cerevisiae to efficiently cooperate in decomposition and ethanolic fermentation of wheat straw. Biomass Bioenergy 35:3727–3732. https://doi.org/10.1016/j.biombioe.2011.05.005Google Scholar
  262. Parisot D, Devys M, Barbier M (1990) Naphthoquinone pigments related to fusarubin from the fungus Fusarium solani (Mart.) Sacc. Microbios 64:31–47Google Scholar
  263. Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K (2015) Lignocellulosic ethanol: technology design and its impact on process efficiency. Biotechnol Adv 33:1091–1107. https://doi.org/10.1016/j.biotechadv.2014.12.002Google Scholar
  264. Petrova A, Dar’in D, Ivanov A, Moskin L, Ishimatsu R, Nakano K, Imato T, Bulatov A (2016) Determination of curcumin in biologically active supplements and food spices using a mesofluidic platform with fluorescence detection. Talanta 159:300–306. https://doi.org/10.1016/j.talanta.2016.06.046Google Scholar
  265. Phelps DC, Nemee S, Baker R, Mansell R (1990) Immunoassay for naphthazarin phytotoxins produced by Fusarium solani. Phytopathology 80:298–302. https://doi.org/10.1094/phyto-80-298Google Scholar
  266. Pradeep FS, Pradeep BV (2013) Optimization of pigment and biomass production from Fusarium moniliforme under submerged fermentation conditions. Int J Pharm Pharm Sci 5:526–535Google Scholar
  267. Pradeep FS, Shakilabegan M, Palaniswamy M, Pradeep BV (2013) Influence of culture media on growth and pigment production by Fusarium moniliforme KUMBF1201 isolated from paddy field soil. World Appl Sci J 22:70–77Google Scholar
  268. Pradeep FS, Palaniswamy M, Ravi S, Thangamani A, Pradeep BV (2015) Larvicidal activity of a novel isoquinoline type pigment from Fusarium moniliforme KUMBF1201 against Aedes aegypti and Anopheles stephensi. Process Biochem 50:1479–1486. https://doi.org/10.1016/j.procbio.2015.05.022Google Scholar
  269. Prakash S, Singh G, Soni N, Sharma S (2010) Pathogenicity of Fusarium oxysporum against the larvae of Culex quinquefasciatus (Say) and Anopheles stephensi (Liston) in laboratory. Parasitol Res 107:651–655. https://doi.org/10.1007/s00436-010-1911-1Google Scholar
  270. Prazeres JN (2006) Produção e caracterização da lipase alcalina de Fusarium oxysporum. Dissertation, State University of CampinasGoogle Scholar
  271. Prazeres JN, Cruz JAB, Pastore GM (2006) Characterization of alkaline lipase from Fusarium oxysporum and the effect of different surfactants and detergents on the enzyme activity. Braz J Microbiol 37:505–509. https://doi.org/10.1590/S1517-83822006000400019Google Scholar
  272. Quadros CP, Duarte MCT, Pastore GM (2011) Biological activities of a mixture of biosurfactants from Bacillus subtilis and alkaline lipase from Fusarium oxysporum. Braz J Microbiol 42:354–361. https://doi.org/10.1590/s1517-83822011000100045Google Scholar
  273. Rana KL, Kour D, Yadav AN, Kumar V, Dhaliwal HS (2016a) Biotechnological applications of endophytic microbes associated with barley (Hordeum vulgare L.) growing in Indian Himalayan regions. In: Proceeding of 86th annual session of NASI and symposium on “Science, technology and entrepreneurship for human welfare in The Himalayan Region”, p 80Google Scholar
  274. Rana KL, Kour D, Yadav AN, Kumar V, Dhaliwal HS (2016b) Endophytic microbes from wheat: diversity and biotechnological applications for sustainable agriculture. In: Proceeding of 57th Association of Microbiologist of India and International symposium on “Microbes and Biosphere: What’s New What’s Next”, p 453Google Scholar
  275. Rana KL, Kour D, Verma P, Yadav AN, Kumar V, Singh DH (2017) Diversity and biotechnological applications of endophytic microbes associated with maize (Zea mays L.) growing in Indian Himalayan regions. In: Proceeding of national conference on advances in food science and technology, p 41Google Scholar
  276. Raper KB, Thom C (1949) A manual of Penicillium. Williams and Wilkins, BaltimoreGoogle Scholar
  277. Reddy TK (1962) Role of plant cover in distribution of fungi in Nilgiri forest soils. Proc Indian Acad Soc 56B:185–194Google Scholar
  278. Refai M, Hassan A, Mamed M (2015) Monograph on the genus Fusarium. https://doi.org/10.13140/RG.2.1.3104.2728
  279. Richards M (1956) A census of mould spores in the air over Britain in 1952. Trans Br Mycol Soc 39:431–441Google Scholar
  280. Rippon JW (1982) Medical mycology: the pathogenic fungi and the pathogenic actinomycetes. W. B. Saunders Company, PhiladelphiaGoogle Scholar
  281. Rodriguez-Amaya DB (2016) Natural food pigments and colorants. Curr Opin Food Sci 7:20–26. https://doi.org/10.1016/j.cofs.2015.08.004Google Scholar
  282. Rushdi MH, Sellam MA, Abd-Elrazik A, Allam AD, Salem A (1980a) Relationship between root-knot nematode and Fusarium wilt of certain leguminous plants. Plant Pathol 11:25–35Google Scholar
  283. Rushdi MH, Sellam MA, Abd-Elrazik A, Allam AD, Salem A (1980b) Histological changes induced by Meloidogyne javanaica and Fusarium species on roots of selected leguminous plants. Egyptian Journal of Phytopathology 12(1–2):43–47Google Scholar
  284. Rushdi MH, Sellam MA, Abd-Elrazik A, Allam AD, Salem A (1981) Physiological and biochemical changes in broadbean roots due to infection with Fusarium oxysporum, Meloidogyne javanica and their combination. Assiut J Agric Sci 12(1):81–89Google Scholar
  285. Saad SI (1958) Studies in atmospheric pollen grains and spore deposition in relation to weather condition and diurnal variation in the incidence of pollen. Egypt J Bot 1:63–79Google Scholar
  286. Sagaram US, Kolomiets M, Shim W (2006) Regulation of fumonisin biosynthesis in Fusarium verticillioides-maize system. Plant Pathol J 22:203–210. https://doi.org/10.5423/ppj.2006.22.3.203Google Scholar
  287. Sahab AF, Elewa IS, Mostafa MH, Ziedan EH (2001) Integrated control of wilt and root-rot diseases of sesame in Egypt. Egypt J Appl Sci 16(7):448–462Google Scholar
  288. Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7:1–11Google Scholar
  289. Salehi B, Bayat M, Dezfulian M, Sabokbar A, Tabaraie B (2016) The assessment of anti-tumoral activity of polysaccharide extracted from terrestrial filamentous fungus. Saudi J Biol Sci:0–5Google Scholar
  290. Sallam NMA, Abdel-Monaim MF (2012) Influence of some agricultural practices on suppression of lentil wilt disease. Plant Pathol J 11(1):32–37Google Scholar
  291. Samuels GJ, Nirenberg HI, Seifert KA (2001) Perithecial species of Fusarium. Pages 1-14 in: Fusarium: Paul E. Nelson memorial symposium. In: Summerell BA, Leslie JF, Backhouse D, Bryden WL, Burgess LW (eds) . American Phytopathological Society, St. Paul, MNGoogle Scholar
  292. Sancho RAS, Pastore GM (2012) Evaluation of the effects of anthocyanins in type 2 diabetes. Food Res Int 46:378–386. https://doi.org/10.1016/j.foodres.2011.11.021Google Scholar
  293. Sarris J, Latrasse A (1985) Production of odoriferous gamma lactones by Fusarium poae. Agric Biol Chem 49:3227–3230. https://doi.org/10.1271/bbb1961.49.3227Google Scholar
  294. Sasanya JJ, Hall C, Wolf-Hall C (2008) Analysis of deoxynivalenol, masked deoxynivalenol, and Fusarium graminearum pigment in wheat samples, using liquid chromatography–UV–mass spectrometry. J Food Prot 71:1205–1213. https://doi.org/10.4315/0362-028x-71.6.1205Google Scholar
  295. Schroth MN, Hancock JG (1981) Disease-suppressive soil and root-colonizing bacteria. Science 216:1376–1381Google Scholar
  296. Seddek NH (2007) Fungi associated with some wild plants Thesis, Faculty of Science, Assiut, UniversityGoogle Scholar
  297. Sehgal SC, Dhawan S, Chhiber S, Sharma M, Talwar P (1981) Frequency and significance of fungal isolations from conjunctival sac and their role in ocular infections. Mycopathologia 73:17–19Google Scholar
  298. Seifert K (1996) Fuskey, Fusarium interactive key. Agr and Agri-Food Canada, OttawaGoogle Scholar
  299. Shephard GS, Thiel PG, Stockenstrom S, Sydenham EW (1996) Worldwide survey of fumonisin contamination of corn and corn-based products. J AOAC Int 79:671–687Google Scholar
  300. Shihata ZA, Gad El-Hak A (1989) Cowpea wilt and root rot disease in El-Minia, Egypt. Assiut J Agric Sci 20:159–171Google Scholar
  301. Shiono Y, Ariefa NR, Anwar C, Matsjeh S, Sappapan R, Murayama T, Koseki T, Kawamura T, Uesugi S, Kimura KI (2016) New metabolites produced by Fusarium solani T-13 isolated from a dead branch. Phytochem Lett 17:232–237. https://doi.org/10.1016/j.phytol.2016.08.003Google Scholar
  302. Singh R, Kumar M, Mittal A, Mehta PK (2016) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6:174. https://doi.org/10.1007/s13205-016-0485-8Google Scholar
  303. Snyder WC, Hansen HN (1940) The species concept in Fusarium. Am J Bot 27:64–67Google Scholar
  304. Snyder WC, Hansen HN (1941) The species concept in Fusarium with reference to section Martiella. Am J Bot 28:738–742Google Scholar
  305. Snyder WC, Hansen HN (1945) The species concept in Fusarium with reference to Discolor and other sections. Am J Bot 28:738–742Google Scholar
  306. Sondergaard TE, Klitgaard LG, Purup S, Kobayashi H, Giese H, Sørensen JL (2012) Estrogenic effects of fusarielins in human breast cancer cell lines. Toxicol Lett 214:259–262. https://doi.org/10.1016/j.toxlet.2012.09.004Google Scholar
  307. Soni H, Rawat HK, Ahirwar S, Kango N (2016) Screening, statistical optimized production and application of β-mannanase from some newly isolated fungi. Eng Life Sci. https://doi.org/10.1002/elsc.201600136
  308. Son SW, Kim HY, Choi GJ, Lim HK, Jang KS, Lee SO, Lee S, Sung ND, Kim JC (2008) Bikaverin and fusaric acid from Fusarium oxysporum show antioomycete activity against Phytophthora infestans. J Appl Microbiol 104:692–698Google Scholar
  309. Sørensen JL, Sondergaard TE (2014) The effects of different yeast extracts on secondary metabolite production in Fusarium. Int J Food Microbiol 170:55–60. https://doi.org/10.1016/j.ijfoodmicro.2013.10.024Google Scholar
  310. Souza PNC, Grigoletto TLB, Moraes LAB, Abreu LM, Guimarães LHS, Santos C, Glavão LR, Cardoso PG (2016) Production and chemical characterization of pigments in filamentous fungi. Microbiology 162:12–22. https://doi.org/10.1099/mic.0.000168Google Scholar
  311. Srivastava VB, Mishra RR (1971) Investigation into rhizosphere microflora. I. Succession of microflora of root regions of Oryza sativa L. Microbiol Esp 24(3):193–205Google Scholar
  312. Stamatis H, Christakopoulos P, Kekos D, Macris BJ, Kolisis FN (1998) Studies on the synthesis of short-chain geranyl esters catalysed by Fusarium oxysporum esterase in organic solvents. J Mol Catal B Enzym 4:229–236. https://doi.org/10.1016/S1381-1177(98)00003-4Google Scholar
  313. Steinberg C, Laurent J, Edel-Hermann V, Barbezant M, Sixt N, Dalle F, Aho S, Bonnin A, Hartemann P, Sautour M (2015) Adaptation of Fusarium oxysporum and F. dimerum to the specific aquatic environment provided by the water systems of hospitals. Water Res 76:53–65. https://doi.org/10.1016/j.watres.2015.02.036Google Scholar
  314. Stoilova T, Chavdarov P (2006) Evaluation of lentil germplasm for disease resistance to Fusarium wilt. J Cent Eur Agric 7(1):121–126Google Scholar
  315. Stoilova T, Pereira G (1999) Morphological characterization of 120 lentil (Lens culinaris Medic.) accessions. Lentil Exp News Serv 2:7–9Google Scholar
  316. Studt L, Wiemann P, Kleigrewe K, Humpf HU, Tudzynski B (2012) Biosynthesis of fusarubins accounts for pigmentation of Fusarium fujikuroi perithecia. Appl Environ Microbiol 78:4468–4480. https://doi.org/10.1128/aem.00823-12Google Scholar
  317. Suman A, Verma P, Yadav AN, Saxena AK (2015) Bioprospecting for extracellular hydrolytic enzymes from culturable thermotolerant bacteria isolated from Manikaran thermal springs. Res J Biotechnol 10:33–42Google Scholar
  318. Summerell BA, Salleh B, Leslie JF (2003) A utilitarian approach to Fusarium identification. Plant Dis 87(2):117–128Google Scholar
  319. Summerell BA, Laurence MH, Liew ECY, Leslie JF (2010) Biogeography and phylogeography of Fusarium: a review. Fungal Divers 44:3–13. https://doi.org/10.1007/s13225-010-0060-2Google Scholar
  320. Suprum TP (1963) Seasonal changes in mycoflora of the forest soils in the area of Moscow. Nach Dockl Vyssh Skkoly Biol Nank 3:93–103Google Scholar
  321. Suresh PV, Sakhare PZ, Sachindra NM, Halami PM (2014) Extracellular chitin deacetylase production in solid state fermentation by native soil isolates of Penicillium monoverticillium and Fusarium oxysporum. J Food Sci Technol 51(8):1594–1599. https://doi.org/10.1007/s13197-012-0676-1Google Scholar
  322. Takemoto K, Kamisuki S, Chia PT, Kuriyama I, Mizushina Y, Sugawara F (2014) Bioactive dihydronaphthoquinone derivatives from Fusarium solani. J Nat Prod 77:1992–1996. https://doi.org/10.1021/np500175jGoogle Scholar
  323. Taligoola HK, Ismail MA, Chebon SK (2004) Mycobiota associated with rice grains marketed in Uganda. J Biol Sci 4(1):271–278Google Scholar
  324. Tatum JH, Baker RA, Berry RE (1985) Naphthoquinones produced by Fusarium oxysporum isolated from citrus. Phytochemistry 24:457–459. https://doi.org/10.1016/s0031-9422(00)80746-3Google Scholar
  325. Tatum JH, Baker RA, Berry RE (1987) Naphthoquinones and derivatives from Fusarium. Phytochemistry 26:795–798. https://doi.org/10.1016/s0031-9422(00)84789-5Google Scholar
  326. Thadathil N, Kuttappan AKP, Vallabaipatel E, Kandasamy M, Velappan SP (2014) Statistical optimization of solid state fermentation conditions for the enhanced production of thermoactive chitinases by mesophilic soil fungi using response surface methodology and their application in the reclamation of shrimp processing by-products. Ann Microbiol 64:671–681. https://doi.org/10.1007/s13213-013-0702-1Google Scholar
  327. Thrane U (2001) Developments in the taxonomy of Fusarium species based on secondary metabolites. In: Summerell BA, Leslie JF, Backhause D, Bryden WL, Burgess LW (eds) Fusarium Paul E. Nelson memorial symposium. APS Press, St. Paul Minnesota, pp 27–49Google Scholar
  328. Thrane U, Hansen U (1995) Chemical and physiological characterization of taxa in the Fusarium sambucinum complex. Mycopathologia 129:183–190Google Scholar
  329. Thrane U, Adler A, Clasen PE, Galvano F, Langseth W, Lew H, Logrieco A, Nielsen KF, Ritieni A (2004) Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and Fusarium sporotrichioides. Int J Food Microbiol 95:257–266. https://doi.org/10.1016/j.ijfoodmicro.2003.12.005Google Scholar
  330. Treger TR, Visscher DW, Bartlett MS, Smith LW (1985) Diagnosis of pulmonary infection caused by Aspergillus: usefulness of respiratory cultures. J Infect Dis 152:572–576Google Scholar
  331. Trisuwan K, Khamthong N, Rukachaisirikul V, Phongpaichit S, Preedanon S, Sakayaroj J (2010) Anthraquinone, cyclopentanone, and naphthoquinone derivatives from the sea fan-derived fungi Fusarium spp. PSU-F14 and PSU-F1135. J Nat Prod 73:1507–1511. https://doi.org/10.1021/np100282kGoogle Scholar
  332. Trisuwan K, Rukachaisirikul V, Borwornwiriyapanc K, Phongpaichit S, Sakayaroj J (2013) Pyrone derivatives from the soil fungus Fusarium solani PSU-RSPG37. Phytochem Lett 6:495–497. https://doi.org/10.1016/j.phytol.2013.06.008Google Scholar
  333. Tuli HS, Chaudhary P, Beniwal V, Sharma AK (2015) Microbial pigments as natural color sources: current trends and future perspectives. J Food Sci Technol 52:4669–4678. https://doi.org/10.1007/s13197-014-1601-6Google Scholar
  334. Vandamme EJ (2003) Bioflavours and fragrances via fungi and their enzymes. Fungal Divers 13:153–166Google Scholar
  335. Velez H, Diaz F (1985) Onychomycosis due to saprophytic fungi. Mycopathologia 91:87–92Google Scholar
  336. Velmurugan P, Kamala-Kannan S, Balachandar V, Lakshmanaperumalsamy P, Chae JC, Oh BT (2010) Natural pigment extraction from five filamentous fungi for industrial applications and dyeing of leather. Carbohydr Polym 79:261–268. https://doi.org/10.1016/j.carbpol.2009.07.058Google Scholar
  337. Venugopalan A, Srivastava S (2015) Enhanced camptothecin production by ethanol addition in the suspension culture of the endophyte, Fusarium solani. Bioresour Technol 188:251–257Google Scholar
  338. Venugopalan A, Potunuru UR, Madhulika AU, Srivastava S (2016) Effect of fermentation parameters, elicitors and precursors on camptothecin production from the endophyte Fusarium solani. Bioresour Technol 213:311–318Google Scholar
  339. Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48:1065–1079. https://doi.org/10.1016/j.procbio.2013.06.006Google Scholar
  340. Vohra M, Manwar J, Manmode R, Padgilwar S, Patil S (2014) Bioethanol production: feedstock and current technologies. J Environ Chem Eng 2:573–584. https://doi.org/10.1016/j.jece.2013.10.013Google Scholar
  341. Warcup JH (1957) Studies on the occurrence and activity of fungi in a wheat field soil. Trans Br Mycol Soc 40:237–259Google Scholar
  342. Waśkiewicz A, Stępień L (2012) Mycotoxins biosynthesized by plant derived Fusarium isolates. Arh Hig Rada Toksikol 63:437–446. https://doi.org/10.2478/10004-1254-63-2012-2230Google Scholar
  343. Wiemann P, Willmann A, Straeten M, Kleigrewe K, Beyer M, Humpf HU, Tudzynski B (2009) Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Mol Microbiol 72:931–946Google Scholar
  344. Witkamp M (1960) Seasonal fluctuation of the fungus flora in mull and more of an Oak forest. Meded Inst Toegep Biol Onderz Nat 46:8Google Scholar
  345. Wollenweber HW, Reinking OA (1935) Die Fusarien, ihr Beschreibung, Schadwirkung und Bekampfung. Verlag Paul Parey, Berlin, GermanyGoogle Scholar
  346. Wu Y, Nian D (2014) Production optimization and molecular structure characterization of a newly isolated novel laccase from Fusarium solani MAS2, an anthracene-degrading fungus. Int Biodeterior Biodegrad 86:382–389. https://doi.org/10.1016/j.ibiod.2013.10.015Google Scholar
  347. Xiros C, Christakopoulos P (2009) Enhanced ethanol production from brewer’s spent grain by a Fusarium oxysporum consolidated system. Biotechnol Biofuels 2009:2–4. https://doi.org/10.1186/1754-6834-2-4Google Scholar
  348. Xiros C, Topakas E, Katapodis P, Christakopoulos P (2008) Evaluation of Fusarium oxysporum as an enzyme factory for the hydrolysis of brewer’s spent grain with improved biodegradability for ethanol production. Ind Crop Prod 28:213–224. https://doi.org/10.1016/j.indcrop.2008.02.004Google Scholar
  349. Xiros C, Katapodis P, Christakopoulos P (2009) Evaluation of Fusarium oxysporum cellulolytic system for an efficient hydrolysis of hydrothermally treated wheat straw. Bioresour Technol 100:5362–5365. https://doi.org/10.1016/j.biortech.2009.05.065Google Scholar
  350. Xiros C, Katapodis P, Christakopoulos P (2011) Factors affecting cellulose and hemicellulose hydrolysis of alkali treated brewers spent grain by Fusarium oxysporum enzyme extract. Bioresour Technol 102:1688–1696. https://doi.org/10.1016/j.biortech.2010.09.108Google Scholar
  351. Xu J, Wang X, Hu L, Xia J, Wu Z, Xu N, Dai B, Wu B (2015) A novel ionic liquid-tolerant Fusarium oxysporum BN secreting ionic liquid stable cellulase: consolidated bioprocessing of pretreated lignocellulose containing residual ionic liquid. Bioresour Technol 181:18–25. https://doi.org/10.1016/j.biortech.2014.12.080Google Scholar
  352. Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307Google Scholar
  353. Yang SX, Gao JM, Zhang Q, Laatsch H (2011) Toxic polyketides produced by Fusarium sp., an endophytic fungus isolated from Melia azedarach. Bioorg Med Chem Lett 21:1887–1889. https://doi.org/10.1016/j.bmcl.2010.12.043Google Scholar
  354. Yang SX, Gao JM, Laatsch H, Tian JM, Pescitelli G (2012a) Absolute configuration of fusarone, a new azaphilone from the endophytic fungus Fusarium sp. isolated from Melia azedarach, and of related azaphilones. Chirality 24:621–627. https://doi.org/10.1002/chir.22044Google Scholar
  355. Yang SX, Wang HP, Gao JM, Zhang Q, Laatsch H, Kuang Y (2012b) Fusaroside, a unique glycolipid from Fusarium sp., an endophytic fungus isolated from Melia azedarach. Org Biomol Chem 10:819–824. https://doi.org/10.1039/c1ob06426fGoogle Scholar
  356. Yang X, Choi HS, Park C, Kim SW (2015) Current states and prospects of organic waste utilization for biorefineries. Renew Sust Energ Rev 49:335–349. https://doi.org/10.1016/j.rser.2015.04.114Google Scholar
  357. Yang L, Zhou X-K, Wang L, Shi H-X, Liu X-F, Wang Y-G (2018) Isolation of Endophytic fungi from Thermopsis lanceolata and their antioxidant activity. Acta Medica Mediterr 34:27–31Google Scholar
  358. Yen G, Lee C (1996) Antioxidant activity of extracts from molds. J Food Prot 59:1327–1330Google Scholar
  359. Youssef YA, Karam El-Din A (1988) Airborne spores of opportunistic fungi in the atmosphere of Cairo, Egypt. I Mould Fungi Grana 27:89–92Google Scholar
  360. Yusuf F, Chaubey A, Jamwal U, Parshad R (2013) A new isolate from Fusarium proliferatum (AUF-2) for efficient nitrilase production. Appl Biochem Biotechnol 171:1022–1031. https://doi.org/10.1007/s12010-013-0416-7Google Scholar
  361. Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sust Energ Rev 66:751–774. https://doi.org/10.1016/j.rser.2016.08.038Google Scholar
  362. Zaher AM, Makboul MA, Moharram AM, Tekwani BL, Calderon AI (2015) A new enniatin antibiotic from the endophyte Fusarium tricinctum Corda. J Antibit 68:197–200Google Scholar
  363. Zhong JJ, Xiao JH (2009) Secondary metabolites from higher fungi: discovery, bioactivity, and bioproduction. Adv Biochem Eng Biotechnol 113:79–150. https://doi.org/10.1007/10_2008_26Google Scholar
  364. Zhu ZY, Liu XC, Fang XN, Sun HQ, Yang XY, Zhang YM (2016) Structural characterization and anti-tumor activity of polysaccharide produced by Hirsutella sinensis. Int J Biol Macromol 82:959–966Google Scholar
  365. Ziedan EHE (1993) Studies on Fusarium wilt disease of sesame in Arabic Republic of Egypt. M. Sc. Thesis, Plant Pathology Department, Faculty of Agriculture, Ain-Shams University, Egypt, p 121Google Scholar
  366. Ziedan EHE (1998) Integrated control of wilt and root-rot diseases of sesame in A.R.E. Ph.D. Thesis, Faculty of Agriculture, Ain-Shams University, Egypt, p 169Google Scholar
  367. Ziedan EH, Mostafa MH, Elewa IS (2012) Effect of bacterial inocula on Fusarium oxysporum f. sp. sesami and their pathological potential on sesame. J Agric Technol 8(2):699–709Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ahmed M. Abdel-Azeem
    • 1
  • Mohamed A. Abdel-Azeem
    • 2
  • Amira G. Darwish
    • 3
  • Nieven A. Nafady
    • 4
  • Nancy A. Ibrahim
    • 5
  1. 1.Botany Department, Faculty of ScienceUniversity of Suez CanalIsmailiaEgypt
  2. 2.Faculty of Pharmacy and Pharmaceutical Industries, University of SinaiEl-Masaid, Al-ArishEgypt
  3. 3.Food Technology DepartmentArid Lands Cultivation Research Institute, City of Scientific Research and Technological ApplicationsNew Borg El-Arab, AlexandriaEgypt
  4. 4.Botany and Microbiology Department, Faculty of ScienceAssuit UniversityAssiutEgypt
  5. 5.Ministry of Health and Population, Central Labs SectorDamanhour, BaheiraEgypt

Personalised recommendations