Advertisement

Trichoderma: Biodiversity, Ecological Significances, and Industrial Applications

  • Sushma Sharma
  • Divjot Kour
  • Kusam Lata Rana
  • Anu Dhiman
  • Shiwani Thakur
  • Priyanka Thakur
  • Sapna Thakur
  • Neelam Thakur
  • Surya Sudheer
  • Neelam Yadav
  • Ajar Nath YadavEmail author
  • Ali A. Rastegari
  • Karan Singh
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

The genus Trichoderma is ubiquitous in the environment, particularly in soils. Trichoderma species could be readily isolated from soil by all available conventional methods, largely because they grow rapidly and also because of their abundant conidiation. Based on the phylogenetic study, several researchers reported that Trichoderma and Hypocrea form a single holomorph genus, within which two major clades can be distinguished. The species of Trichoderma possess diverse biotechnological applications such as they act as biofungicide for controlling various plant diseases, as biofertilizers for plant growth promotion. Trichoderma secrete diverse volatile compounds including alcohols, aldehydes and ketones, ethylene, hydrogen cyanide, and monoterpenes, as well as nonvolatile compounds including peptaibols and diketopiperazine-like gliotoxin and gliovirin which are known to exhibit antibiotic activity. The interaction of Trichoderma with the host plant results in parasitism/predation; production of antibiotic is combined with mycoparasitism (penetration and infection), production of cell wall-degrading enzymes or lytic enzymes, competition for nutrients or for space, and establishment of induced resistance in the plant.

Keywords

Biodiversity Extreme habitats Industrial application Microbiome Trichoderma 

Notes

Acknowledgment

The authors are grateful to Prof. Harcharan Singh Dhaliwal, Vice Chancellor, Eternal University, Baru Sahib, Himachal Pradesh, India for providing infrastructural facilities and constant encouragement.

References

  1. Abo-Elyousr KA, Abdel-Hafez SI, Abdel-Rahim IR (2014) Isolation of Trichoderma and evaluation of their antagonistic potential against Alternaria porri. J Phytopath 162:567–574Google Scholar
  2. Adnan LA, Sathishkumar P, Yusoff ARM, Hadibarata T, Ameen F (2017) Rapid bioremediation of Alizarin Red S and Quinizarine Green SS dyes using Trichoderma lixii F21 mediated by biosorption and enzymatic processes. Bioprocess Biosyst Eng 40:85–97Google Scholar
  3. Ahamed A, Vermette P (2008) Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochem Eng J 40:399–407Google Scholar
  4. Ahmad JS, Baker R (1987) Rhizosphere competence of Trichoderma harzianum. Phytopathology 77:182–189Google Scholar
  5. Ahmed S, Bashir A, Saleem H, Saadia M, Jamil A (2009) Production and purification of cellulose-degrading enzymes from a filamentous fungus Trichoderma harzianum. Pak J Bot 41:1411–1419Google Scholar
  6. Almassi F, Ghisalberti EL, Narbey MJ, Sivasithamparam K (1991) New antibiotics from strains of Trichoderma harzianum. J Nat Prod 54:396–402Google Scholar
  7. Alvindia DG, Natsuaki KT (2008) Evaluation of fungal epiphytes isolated from banana fruit surfaces for biocontrol of banana crown rot disease. Crop Prot 27:1200–1207Google Scholar
  8. Andrade R, Ayer WA, Mebe PP (1992) The metabolites of Trichoderma longibrachiatum. Part 1. Isolation of the metabolites and the structure of trichodimerol. Can J Chem 70:2526–2535Google Scholar
  9. Anis M, Zaki MJ, Dawar S (2012) Development of a Na-alginate-based bioformulation and its use in the management of charcoal rot of sunflower (Helianthus annuus L.). Pak J Bot 44:1167–1170Google Scholar
  10. Arnold AE, Herre EA (2003) Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 95:388–398Google Scholar
  11. Arnold EA, Mej´ıa LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654Google Scholar
  12. Arvas M, Pakula T, Smit B, Rautio J, Koivistoinen H, Jouhten P, Lindfors E, Wiebe M, Penttilä M, Saloheimo M (2011) Correlation of gene expression and protein production rate-a system wide study. BMC genomics 12:616Google Scholar
  13. Asmawati L, Widiastuti A, Sumardiyono C (2017) Induction of reactive oxygen species by Trichoderma spp. against downy mildew in maize. In: Proceeding of the 1st international conference on tropical agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-60363-6_13 Google Scholar
  14. Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol Plant-Microbe Interact 15:1147–1156Google Scholar
  15. Awad NE, Kassem HA, Hamed MA, El-Feky AM, Elnaggar MA, Mahmoud K, Ali MA (2018) Isolation and characterization of the bioactive metabolites from the soil derived fungus Trichoderma viride. Mycology 9:70–80Google Scholar
  16. Aziz N, El-Fouly M, El-Essawy A, Khalaf M (1997) Influence of bean seedling root exudates on the rhizosphere colonization by Trichoderma lignorum for the control of Rhizoctonia solani. Bot Bull Acad Sin 38:33–39Google Scholar
  17. Bai Z, Jin B, Li Y, Chen J, Li Z (2008) Utilization of winery wastes for Trichoderma viride biocontrol agent production by solid state fermentation. J Environ Sci 20:353–358Google Scholar
  18. Baig M, Mane V, More D, Shinde L, Baig M (2003) Utilization of banana agricultural waste: production of cellulases by soil fungi. J Environ Biol 24:173–176Google Scholar
  19. Benítez T, Rincón AM, Limón MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260Google Scholar
  20. Bissett J, Gams W, Jaklitsch W, Samuels GJ (2015) Accepted Trichoderma names in the year 2015. IMA fungus 6:263–295Google Scholar
  21. Brückner H, Graf H, Bokel M (1984) Paracelsin; characterization by NMR spectroscopy and circular dichroism, and hemolytic properties of a peptaibol antibiotic from the cellulolytically active mold Trichoderma reesei. Part B. Experientia 40:1189–1197Google Scholar
  22. Buès R, Bussières P, Dadomo M, Dumas Y, Garcia-Pomar M, Lyannaz J-P (2004) Assessing the environmental impacts of pesticides used on processing tomato crops. Agric, Ecosyst Environ 102:155–162Google Scholar
  23. Cardoza RE, Hermosa MR, Vizcaíno JA, González F, Llobell A, Monte E, Gutiérrez S (2007) Partial silencing of a hydroxy-methylglutaryl-CoA reductase-encoding gene in Trichoderma harzianum CECT 2413 results in a lower level of resistance to lovastatin and lower antifungal activity. Fungal Genet Biol 44:269–283Google Scholar
  24. Carsolio C, Benhamou N, Haran S, Cortés C, Gutiérrez A, Chet I, Herrera-Estrella A (1999) Role of the Trichoderma harzianum Endochitinase Gene, ech42, in Mycoparasitism. Appl Environ Microbiol 65:929–935Google Scholar
  25. Cheng P, Liu B, Su Y, Hu Y, Hong Y, Yi X, Chen L, Su S, Chu JS, Chen N (2017) Genomics insights into different cellobiose hydrolysis activities in two Trichoderma hamatum strains. Microb Cell Fact 16:63Google Scholar
  26. Cheng P, Song W, Gong X, Liu Y, Xie W, Huang L, Hong Y (2015) Proteomic approaches of Trichoderma hamatum to control Ralstonia solanacearum causing pepper bacterial wilt. Int J Agric Biol 17:1101–1109Google Scholar
  27. Chet I (1987) Trichoderma-Application, mode of action, and potential as a biocontrol agent of soilborne pathogenic fungi. In: Chet I (ed) Innovative approaches to plant disease control. Wiley, New York, pp 137–160Google Scholar
  28. Chet I, Inbar J, Hadar I (1997) Fungal antagonists and mycoparasites. In: Wicklow DT, Söderström B (eds) The Mycota IV: environmental and microbial relationships. Springer, Berlin, pp 165–184Google Scholar
  29. Contreras-Cornejo HA, López-Bucio JS, Méndez-Bravo A, Macías-Rodríguez L, Ramos-Vega M, Guevara-García ÁA, López-Bucio J (2015) Mitogen-activated protein kinase 6 and ethylene and auxin signaling pathways are involved in Arabidopsis root-system architecture alterations by Trichoderma atroviride. Mol Plant-Microbe Interact 28:701–710Google Scholar
  30. Contreras-Cornejo HA, Macías-Rodríguez L, Beltrán-Peña E, Herrera-Estrella A, López-Bucio J (2011) Trichoderma-induced plant immunity likely involves both hormonal-and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signal Behav 6:1554–1563Google Scholar
  31. Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592Google Scholar
  32. Contreras-Cornejo HA, Macías-Rodríguez L, Herrera-Estrella A, López-Bucio J (2014) The 4-phosphopantetheinyl transferase of Trichoderma virens plays a role in plant protection against Botrytis cinerea through volatile organic compound emission. Plant Soil 379:261–274Google Scholar
  33. Coque J-JR, Álvarez-Rodríguez ML, Larriba G (2003) Characterization of an inducible chlorophenol O-methyltransferase from Trichoderma longibrachiatum involved in the formation of chloroanisoles and determination of its role in cork taint of wines. Appl Environ Microbiol 69:5089–5095Google Scholar
  34. Crutcher FK, Parich A, Schuhmacher R, Mukherjee PK, Zeilinger S, Kenerley CM (2013) A putative terpene cyclase, vir4, is responsible for the biosynthesis of volatile terpene compounds in the biocontrol fungus Trichoderma virens. Fungal Genet Biol 56:67–77Google Scholar
  35. Cumagun C, Hockenhull J, Lübeck M (2000) Characterization of Trichoderma isolates from philippine rice fields by UP-PCR and rDNA-ITS1 analysis: identification of UP-PCR markers. J Phytopath 148:109–115Google Scholar
  36. Cutler HG, Himmelsbach DS, Arrendale RF, Cole PD, Cox RH (1989) Koninginin A: a novel plant growth regulator from Trichoderma koningii. Agric Biol Chem 53:2605–2611Google Scholar
  37. Daguerre Y, Siegel K, Edel-Hermann V, Steinberg C (2014) Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: a review. Fungal Biol Rev 28:97–125Google Scholar
  38. De La Cruz J, Rey M, Lora JM, Hidalgo-Gallego A, Domínguez F, Pintor-Toro JA, Llobell A, Benítez T (1993) Carbon source control on β-glucanases, chitobiase and chitinase from Trichoderma harzianum. Arch Microbiol 159:316–322Google Scholar
  39. De Meyer G, Höfte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593Google Scholar
  40. Degenkolb T, Von Doehren H, Fog Nielsen K, Samuels GJ, Brückner H (2008) Recent advances and future prospects in peptaibiotics, hydrophobin, and mycotoxin research, and their importance for chemotaxonomy of Trichoderma and Hypocrea. Chem Biodivers 5:671–680Google Scholar
  41. Demain AL, Fang A (2000) The natural functions of secondary metabolites. In: Fiechter IA (ed) History of modern biotechnology. Springer, Berlin/New York/Heidelberg. https://doi.org/10.1007/3-540-44964-7_1 Google Scholar
  42. Dennis C, Webster J (1971) Antagonistic properties of species-groups of Trichoderma: II. Production of volatile antibiotics. Trans Br Mycol Soc 57:41–48Google Scholar
  43. Di Marco S, Osti F, Cesari A (2004) Experiments on the control of esca by Trichoderma. Phytopathol Mediterr 43:108–115Google Scholar
  44. Dickinson JM, Hanson JR, Hitchcock PB, Claydon N (1989) Structure and biosynthesis of harzianopyridone, an antifungal metabolite of Trichoderma harzianum. J Chem Soc Perkin Trans 1:1885–1887Google Scholar
  45. Djonović S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–889Google Scholar
  46. du Plessis IL, Druzhinina IS, Atanasova L, Yarden O, Jacobs K (2018) The diversity of Trichoderma species from soil in South Africa with five new additions. Mycologia 110:559–583Google Scholar
  47. Dubos B, Ricard JL (1974) Curative treatment of peach trees against silver leaf disease (Stereum purpureum) with Trichoderma viride preparations. Plant Dis Rep 58:147–150Google Scholar
  48. Duffy BK, Ownley BH, Weller DM (1997) Soil chemical and physical properties associated with suppression of take-all of wheat by Trichoderma koningii. Phytopathology 87:1118–1124Google Scholar
  49. Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9Google Scholar
  50. Elad Y (1994) Biological control of grape grey mould by Trichoderma harzianum. Crop Prot 13:35–38Google Scholar
  51. Elad Y, Baker R (1985) Influence of trace amounts of cations and siderophore-producing pseudomonads on chlamydospore germination of Fusarium oxysporum. Phytopathology 75:1047–1052Google Scholar
  52. Elad Y, Chet I, Henis Y (1982) Degradation of plant pathogenic fungi by Trichoderma harzianum. Can J Microbiol 28:719–725Google Scholar
  53. Endo A, Hasumi K, Yamada A, Shimoda R, Takeshima H (1986) The synthesis of compactin (ML-236B) and monacolin K in fungi. J Antibiot 39:1609–1610Google Scholar
  54. Esposito E, Silva MD (1998) Systematics and environmental application of the genus Trichoderma. Crit Rev Microbiol 24:89–98Google Scholar
  55. Evans HC, Holmes KA, Thomas SE (2003) Endophytes and mycoparasites associated with an indigenous forest tree, Theobroma gileri, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycol Prog 2:149–160Google Scholar
  56. Evidente A, Cabras A, Maddau L, Serra S, Andolfi A, Motta A (2003) Viridepyronone, a new antifungal 6-substituted 2 h-pyran-2-one produced by Trichoderma viride. J Agric Food Chem 51:6957–6960Google Scholar
  57. Gajera H, Katakpara ZA, Patel S, Golakiya B (2016) Antioxidant defense response induced by Trichoderma viride against Aspergillus niger Van Tieghem causing collar rot in groundnut (Arachis hypogaea L.). Microb Pathog 91:26–34Google Scholar
  58. Galante Y, De Conti A, Monteverdi R (2014) Application of Trichoderma enzymes in the textile industry. Trichoderma & Gliocladium 2:311-325Google Scholar
  59. Ganga A, González-Candelas L, Ramón D, Pérez-González JA (1997) Glucose-tolerant expression of Trichoderma longibrachiatum endoglucanase I, an enzyme suitable for use in wine production. J Agric Food Chem 45:2359–2362Google Scholar
  60. Garnica-Vergara A, Barrera-Ortiz S, Muñoz-Parra E, Raya-González J, Méndez-Bravo A, Macías-Rodríguez L, Ruiz-Herrera LF, López-Bucio J (2016) The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol 209:1496–1512Google Scholar
  61. Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20:338–343Google Scholar
  62. Ghisalberti E, Narbey M, Dewan M, Sivasithamparam K (1990) Variability among strains of Trichoderma harzianum in their ability to reduce take-all and to produce pyrones. Plant Soil 121:287–291Google Scholar
  63. Ghisalberti E, Sivasithamparam K (1991) Antifungal antibiotics produced by Trichoderma spp. Soil Biol Biochem 23:1011–1020Google Scholar
  64. Ghisalberti EL, Rowland CY (1993) Antifungal metabolites from Trichoderma harzianum. J Nat Prod 56:1799–1804Google Scholar
  65. Häkkinen M, Arvas M, Oja M, Aro N, Penttilä M, Saloheimo M, Pakula TM (2012) Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microb Cell Fact 11:134Google Scholar
  66. Hanada RE, de Jorge Souza T, Pomella AW, Hebbar KP, Pereira JO, Ismaiel A, Samuels GJ (2008) Trichoderma martiale sp. nov., a new endophyte from sapwood of Theobroma cacao with a potential for biological control. Mycol Res 112:1335–1343Google Scholar
  67. Handelsman J, Stabb EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8:1855Google Scholar
  68. Harman GE (2000) Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant Dis 84:377–393Google Scholar
  69. Harman GE (2006) Overview of Mechanisms and Uses of Trichoderma spp. Phytopathology 96:190–194Google Scholar
  70. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56Google Scholar
  71. Hateet RR (2017) Isolation and Identification of Three Bioactive Compounds from Endophytic Fungus Trichoderma sp. J Al-Nahrain Uni Sci 20:108–113Google Scholar
  72. Henrissat B, Driguez H, Viet C, Schülein M (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Nature Biotechnol 3:722Google Scholar
  73. Hermosa M, Grondona I, Et I, Diaz-Minguez J, Castro C, Monte E, Garcia-Acha I (2000) Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Appl Environ Microbiol 66:1890–1898Google Scholar
  74. Herpoël-Gimbert I, Margeot A, Dolla A, Jan G, Mollé D, Lignon S, Mathis H, Sigoillot J-C, Monot F, Asther M (2008) Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol Biofuels 1:18Google Scholar
  75. Heydari A, Pessarakli M (2010) A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 10:273–290Google Scholar
  76. Hjeljord L, Tronsmo A (2005) Trichoderma and Gliocladium in biological control: overview. In: Enzymes, biological control and commercial applications, CRC Press, pp 115–133Google Scholar
  77. Hoffmeister D, Keller NP (2007) Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 24:393–416Google Scholar
  78. Holmes KA, Schroers H-J, Thomas SE, Evans HC, Samuels GJ (2004) Taxonomy and biocontrol potential of a new species of Trichoderma from the Amazon basin of South America. Mycol Prog 3:199–210Google Scholar
  79. Howell C (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10Google Scholar
  80. Howell C, Stipanovic R (1980) Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 70:712–715Google Scholar
  81. Howell CR, Stipanovic RD (1994) Effect of sterol biosynthesis inhibitors on phytotoxin (viridiol) production by Gliocladium virens in culture. Phytopathology 84:969–972Google Scholar
  82. Howell C, Stipanovic R, Lumsden R (1993) Antibiotic production by strains of Gliocladium virens and its relation to the biocontrol of cotton seedling diseases. Biocontrol Sci Technol 3:435–441Google Scholar
  83. Howell CR, Stipanovic RD (1983) Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological control of Pythium ultimum. Can J Microbiol 29:321–324Google Scholar
  84. Hoyos-Carvajal L, Orduz S, Bissett J (2009) Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genet Biol 46:615–631Google Scholar
  85. Inbar J, Chet I (1995) The role of recognition in the induction of specific chitinases during mycoparasitism by Trichoderma harzianum. Microbiology 141:2823–2829Google Scholar
  86. Ishii T, Nonaka K, Suga T, Masuma R, Ōmura S, Shiomi K (2013) Cytosporone S with antimicrobial activity, isolated from the fungus Trichoderma sp. FKI-6626. Bioorganic Med Chem Lett 23:679–681Google Scholar
  87. Islam MT, Hashidoko Y, Deora A, Ito T, Tahara S (2005) Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Appl Environ Microbiol 71:3786–3796Google Scholar
  88. Jones EE, Rabeendran N, Stewart A (2014) Biocontrol of Sclerotinia sclerotiorum infection of cabbage by Coniothyrium minitans and Trichoderma spp. Biocontrol Sci Technol 24:1363–1382Google Scholar
  89. Kale G, Rewale K, Sahane S, Magar S (2018) Isolation of Trichoderma spp. from the rhizospheric soils of tomato crop grown in Marathwada region. J Pharmacogn Phytochem 7:3360–3362Google Scholar
  90. Kandula D, Jones E, Stewart A, McLean K, Hampton J (2015) Trichoderma species for biocontrol of soil-borne plant pathogens of pasture species. Biocontrol Sci Technol 25:1052–1069Google Scholar
  91. Kashyap PL, Rai P, Srivastava AK, Kumar S (2017) Trichoderma for climate resilient agriculture. World J Microbiol Biotechnol 33:155Google Scholar
  92. Kawada M, Yoshimoto Y, Kumagai H, Someno T, Momose I, Kawamura N, Isshiki K, Ikeda D (2004) PP2A inhibitors, harzianic acid and related compounds produced by fungus strain F-1531. J Antibiot 57:235–237Google Scholar
  93. Keel C, Voisard C, Berling C-H, Kahr G, Defago G (1989) Iron sufficiency, a prerequisite for the suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA 0 under gnotobiotic conditions. Phytopathology 79:584–589Google Scholar
  94. Khalili E, Javed MA, Huyop F, Rayatpanah S, Jamshidi S, Wahab RA (2016) Evaluation of Trichoderma isolates as potential biological control agent against soybean charcoal rot disease caused by Macrophomina phaseolina. Biotechnol Biotec Eq 30:479–488Google Scholar
  95. Khamthong N, Rukachaisirikul V, Tadpetch K, Kaewpet M, Phongpaichit S, Preedanon S, Sakayaroj J (2012) Tetrahydroanthraquinone and xanthone derivatives from the marine-derived fungus Trichoderma aureoviride PSU-F95. Arch Pharmacal Res 35:461–468Google Scholar
  96. Kidwai MK, Nehra M (2017) Biotechnological applications of Trichoderma species for environmental and food security. In: Plant biotechnology: recent advancements and developments. Springer, Singapore, pp 125–156Google Scholar
  97. Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320Google Scholar
  98. Kontani M, Sakagami Y, Marumo S (1994) First β-1, 6-glucan biosynthesis inhibitor, bisvertinolone isolated from fungus, Acremonium strictum and its absolute stereochemistry. Tetrahedron Lett 35:2577–2580Google Scholar
  99. Kotze C, Van Niekerk J, Halleen F, Mostert L, Fourie P (2011) Evaluation of biocontrol agents for grapevine pruning wound protection against trunk pathogen infection. Phytopathol Mediterr 50:247–263Google Scholar
  100. Kour D, Rana KL, Kumar R, Yadav N, Rastegari AA, Yadav AN, Singh K (2019) Gene Manipulation and Regulation of Catabolic Genes for Biodegradation of Biphenyl Compounds. In: Singh HB, Gupta VK, Jogaiah S (eds) New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier, Amsterdam, pp 1-23. https://doi.org/10.1016/B978-0-444-63503-7.00001-2Google Scholar
  101. Kowalska B, Smolińska U, Szczech M, Winciorek J (2017) Application of organic waste material overgrown with Trichoderma atroviride as a control strategy for Sclerotinia sclerotiorum and Chalara thielavioides in soil. J Plant Prot Res 57:205–211Google Scholar
  102. Kredics L, Láday M, Körmöczi P, Manczinger L, Rákhely G, Vágvölgyi C, Szekeres A (2011) Trichoderma communities of the winter wheat rhizosphere. Agrár-és Vidékfejlesztési Szemle 6:413–418Google Scholar
  103. Kubicek CP (2013) Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J Biotechnol 163:133–142Google Scholar
  104. Kubicek CP, Bissett J, Druzhinina I, Kullnig-Gradinger C, Szakacs G (2003) Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Fungal Genet Biol 38:310–319Google Scholar
  105. Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK (2011a) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:1Google Scholar
  106. Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK (2011b) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40Google Scholar
  107. Kumar A, Scher K, Mukherjee M, Pardovitz-Kedmi E, Sible GV, Singh US, Kale SP, Mukherjee PK, Horwitz BA (2010) Overlapping and distinct functions of two Trichoderma virens MAP kinases in cell-wall integrity, antagonistic properties and repression of conidiation. Biochem Biophys Res Commun 398:765–770Google Scholar
  108. Kumar S (2013) Trichoderma: a biological weapon for managing plant diseases and promoting sustainability. Int J Agric Sci Vet Med 1:106–121Google Scholar
  109. Leeman M, Van Pelt J, Den Ouden F, Heinsbroek M, Bakker P, Schippers B (1995) Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to fusarium wilt, using a novel bioassay. Eur J Plant Pathol 101:655–664Google Scholar
  110. Lin Y-R, Lo C-T, Liu S-Y, Peng K-C (2012) Involvement of pachybasin and emodin in self-regulation of Trichoderma harzianum mycoparasitic coiling. J Agric Food Chem 60:2123–2128Google Scholar
  111. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642Google Scholar
  112. Liu P-G, Yang Q (2005) Identification of genes with a biocontrol function in Trichoderma harzianum mycelium using the expressed sequence tag approach. Res Microbiol 156:416–423Google Scholar
  113. Liu R, Gu Q-Q, Zhu W-M, Cui C-B, Fan G-T (2005) Trichodermamide A and aspergillazine A, two cytotoxic modified dipeptides from a marine-derived fungus Spicaria elegans. Arch Pharmacal Res 28:1042–1046Google Scholar
  114. Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant-Microbe Interact 4:5–13Google Scholar
  115. Lorito M, Farkas V, Rebuffat S, Bodo B, Kubicek CP (1996) Cell wall synthesis is a major target of mycoparasitic antagonism by Trichoderma harzianum. J Bacteriol 178:6382–6385Google Scholar
  116. Lorito M, Woo S (1998) Advances in understanding the antifungal mechanism (s) of Trichoderma and new applications for biological control. Iobc WPRS Bull 21:73–80Google Scholar
  117. Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from ‘omics to the field. Annu Rev Phytopathol 48:395–417Google Scholar
  118. Luckner M (1990) Secondary metabolism in microorganisms, plants and animals. 3rd edn. Springer, BerlinGoogle Scholar
  119. Macías FA, Varela RM, Simonet AM, Cutler HG, Cutler SJ, Eden MA, Hill RA (2000) Bioactive Carotanes from Trichoderma virens. J Nat Prod 63:1197–1200Google Scholar
  120. Malmierca MG, Cardoza RE, Alexander NJ, McCormick SP, Collado IG, Hermosa R, Monte E, Gutiérrez S (2013) Relevance of trichothecenes in fungal physiology: disruption of tri5 in Trichoderma arundinaceum. Fungal Genet Biol 53:22–33Google Scholar
  121. Marco JLD, Valadares-Inglis MC, Felix CR (2003) Production of hydrolytic enzymes by Trichoderma isolates with antagonistic activity against Crinipellis perniciosa, the causal agent of witches’ broom of cocoa. Braz J Microbiol 34:33–38Google Scholar
  122. Marfori EC, Si K, E-i F, Kobayashi A (2002) Trichosetin, a novel tetramic acid antibiotic produced in dual culture of Trichoderma harzianum and Catharanthus roseus callus. Zeitschrift für Naturforschung C 57:465–470Google Scholar
  123. Martinez D, Berka R, Henrissat B, Saloheimo M, Arvas M, Baker S, Chapman J, Chertkov O, Coutinho P, Cullen D (2008) Genome sequence analysis of the cellulolytic fungus Trichoderma reesei (syn. Hypocrea jecorina) reveals a surprisingly limited inventory of carbohydrate active enzymes. Nat Biotechnol 26:553–560Google Scholar
  124. Mazzucco CE, Warr G (1996) Trichodimerol (BMS-182123) inhibits lipopolysaccharide-induced eicosanoid secretion in THP-1 human monocytic cells. J Leukoc Biol 60:271–277Google Scholar
  125. Mendes R, Kruijt M, De Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100Google Scholar
  126. Migheli Q, González-Candelas L, Dealessi L, Camponogara A, Ramón-Vidal D (1998) Transformants of Trichoderma longibrachiatum overexpressing the β-1, 4-endoglucanase gene egl1 show enhanced biocontrol of Pythium ultimum on cucumber. Phytopathology 88:673–677Google Scholar
  127. Mukherjee PK, Horwitz BA, Kenerley CM (2012) Secondary metabolism in Trichoderma–a genomic perspective. Microbiology 158:35–45Google Scholar
  128. Mulaw TB, Druzhinina IS, Kubicek CP, Atanasova L (2013) Novel endophytic Trichoderma spp. isolated from healthy Coffea arabica roots are capable of controlling coffee tracheomycosis. Diversity 5:750–766Google Scholar
  129. Müller A, Faubert P, Hagen M, zu Castell W, Polle A, Schnitzler J-P, Rosenkranz M (2013) Volatile profiles of fungi–chemotyping of species and ecological functions. Fungal Genet Biol 54:25–33Google Scholar
  130. Mutawila C, Vinale F, Halleen F, Lorito M, Mostert L (2016) Isolation, production and in vitro effects of the major secondary metabolite produced by Trichoderma species used for the control of grapevine trunk diseases. Plant Pathol 65:104–113Google Scholar
  131. Nawaz K, Shahid AA, Bengyella L, Subhani MN, Ali M, Anwar W, Iftikhar S, Ali SW (2018) Diversity of Trichoderma species in chili rhizosphere that promote vigor and antagonism against virulent Phytophthora capsici. Sci Hort 239:242–252Google Scholar
  132. Nevalainen H, Suominen P, Taimisto K (1994) On the safety of Trichoderma reesei. J Biotechnol 37:193–200Google Scholar
  133. Ojha S, Chatterjee N (2011) Mycoparasitism of Trichoderma spp. in biocontrol of fusarial wilt of tomato. Arch Phytopathol Plant Protect 44:771–782Google Scholar
  134. Omann MR, Lehner S, Rodríguez CE, Brunner K, Zeilinger S (2012) The seven-transmembrane receptor Gpr1 governs processes relevant for the antagonistic interaction of Trichoderma atroviride with its host. Microbiology 158:107–118Google Scholar
  135. Osbourn A (2010) Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends Genet 26:449–457Google Scholar
  136. Oskiera M, Szczech M, Stępowska A, Smolińska U, Bartoszewski G (2017) Monitoring of Trichoderma species in agricultural soil in response to application of biopreparations. Biol Control 113:65–72Google Scholar
  137. Pal S, Singh H, Sarkar DR, Yadav RS, Rakshit A (2017) Toward an integrated resource management: harnessing Trichoderma for sustainable intensification in agriculture. In: Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 245–256Google Scholar
  138. Pang G, Cai F, Li R, Zhao Z, Li R, Gu X, Shen Q, Chen W (2017) Trichoderma-enriched organic fertilizer can mitigate microbiome degeneration of monocropped soil to maintain better plant growth. Plant Soil 416:181–192Google Scholar
  139. Park Y-H, Mishra RC, Yoon S, Kim H, Park C, Seo S-T, Bae H (2018) Endophytic Trichoderma citrinoviride isolated from mountain-cultivated ginseng (Panax ginseng) has great potential as a biocontrol agent against ginseng pathogens. J Ginseng Res. https://doi.org/10.1016/j.jgr.2018.03.002
  140. Parker SR, Cutler HG, Jacyno JM, Hill RA (1997) Biological activity of 6-pentyl-2 H-pyran-2-one and its analogs. J Agric Food Chem 45:2774–2776Google Scholar
  141. Pascale A, Vinale F, Manganiello G, Nigro M, Lanzuise S, Ruocco M, Marra R, Lombardi N, Woo SL, Lorito M (2017) Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Prot 92:176–181Google Scholar
  142. Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30–thirty years of strain improvement. Microbiology 158:58–68Google Scholar
  143. Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Brock/Springer series in contemporary bioscience. Springer, New York, pp 179–197Google Scholar
  144. Photita W, Lumyong S, Lumyong P (2001) Endophytic fungi of wild banana (Musa acuminata) at doi Suthep Pui National Park, Thailand. Mycol Res 105:1508–1513Google Scholar
  145. Pocasangre L, Sikora R, Vilich V, Schuster R (2000) Survey of banana endophytic fungi from central America and screening for biological control of the burrowing nematode (Radopholus similis). Info Musa 9:3–5Google Scholar
  146. Punja ZK, Utkhede RS (2003) Using fungi and yeasts to manage vegetable crop diseases. Trends Biotechnol 21:400–407Google Scholar
  147. Qian-cutrone J, Huang S, Chang L-P, Pirnik DM, Klohr SE, Dalterio RA, Hugill R, Lowe S, Alam M, Kadow KF (1996) Harziphilone and fleephilone, two new HIV REV/RRE binding inhibitors produced by Trichoderma harzianum. J Antibiot 49:990–997Google Scholar
  148. Ragnaud J, Marceau C, Roche-Bezian M, Wone C (1984) Infection peritoneale a Trichoderma koningii sur dialyse peritoneale continue ambulatoire. Méd Mal Infect 14:402–405Google Scholar
  149. Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2018) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in Endophytic Fungal Research. Springer, Switzerland. https://doi.org/10.1007/978-3-030-03589-1_6Google Scholar
  150. Rao M, Reddy PP, Nagesh M (1998) Evaluation of plant based formulations of Trichoderma harzianum for the management of Meloidogyne incognita on egg plant. Nematol Mediterr 26:59–62Google Scholar
  151. Reddy PP, Rao M, Nagesh M (1996) Management of citrus nematode, Tylenchulus semipenetrans, by integration of Trichoderma harzianum with oil cakes. Nematol Mediterr 24:265–267Google Scholar
  152. Reino JL, Guerrero RF, Hernández-Galán R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123Google Scholar
  153. Reithner B, Schuhmacher R, Stoppacher N, Pucher M, Brunner K, Zeilinger S (2007) Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol 44:1123–1133Google Scholar
  154. Robertson M (1970) Fungi in fluids—a hazard of intravenous therapy. J Med Microbiol 3:99–102Google Scholar
  155. Rocha-Ramírez V, Omero C, Chet I, Horwitz BA, Herrera-Estrella A (2002) Trichoderma atroviride G-protein α-subunit gene tga1 is involved in mycoparasitic coiling and conidiation. Eukaryot Cell 1:594–605Google Scholar
  156. Roldán A, Palacios V, Peñate X, Benítez T, Pérez L (2006) Use of Trichoderma enzymatic extracts on vinification of Palomino fino grapes in the sherry region. J Food Eng 75:375–382Google Scholar
  157. Ru Z, Di W (2012) Trichoderma spp. from rhizosphere soil and their antagonism against Fusarium sambucinum. African J Biotechnol 11:4180–4186Google Scholar
  158. Rubini MR, Silva-Ribeiro RT, Pomella AW, Maki CS, Araújo WL, Dos Santos DR, Azevedo JL (2005) Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of Witches’ Broom disease. Int J Biol Sci 1:24–33Google Scholar
  159. Ruiz N, Roullier C, Petit K, Sallenave-Namont C, Grovel O, Pouchus YF (2013) Marine-derived Trichoderma: a source of new bioactive metabolites. In: Mukherjee PK, Horwitz BA, Singh US, Mala M, Schmoll M (eds) Trichoderma: biology and applications, CAB International, USA, pp 247–279Google Scholar
  160. Samuels G, Pardo-schultheiss R, Hebbar K, Lumsden R, Bastos C, Costa J, Bezerra J (2000) Trichoderma stromaticum sp. nov., a parasite of the cacao witches broom pathogen. Mycol Res 104:760–764Google Scholar
  161. Samuels GJ, Dodd SL, Lu B-S, Petrini O, Schroers H-J, Druzhinina IS (2006a) The Trichoderma koningii aggregate species. Stud Mycol 56:67–133Google Scholar
  162. Samuels GJ, Ismaiel A (2009) Trichoderma evansii and T. lieckfeldtiae: two new T. hamatum-like species. Mycologia 101:142–156Google Scholar
  163. Samuels GJ, Petrini O, Manguin S (1994) Morphological and macromolecular characterization of Hypocrea schweinitzii and its Trichoderma anamorph. Mycologia 86:421–435Google Scholar
  164. Samuels GJ, Suarez C, Solis K, Holmes KA, Thomas SE, Ismaiel A, Evans HC (2006b) Trichoderma theobromicola and T. paucisporum: two new species isolated from cacao in South America. Mycol Res 110:381–392Google Scholar
  165. Saxena AK, Yadav AN, Kaushik R, Tyagi SP, Shukla L (2015) Biotechnological applications of microbes isolated from cold environments in agriculture and allied sectors. In: International conference on “low temperature science and biotechnological advances”, Society of low temperature biology. https://doi.org/10.13140/RG.2.1.2853.5202
  166. Saxena AK, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M, Prasanna R, Shukla L (2016) Microbial diversity of extreme regions: an unseen heritage and wealth. Indian J Plant Genet Resour 29:246–248Google Scholar
  167. Scarselletti R, Faull J (1994) In vitro activity of 6-pentyl-α-pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. Mycol Res 98:1207–1209Google Scholar
  168. Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87:787–799Google Scholar
  169. Seidl V, Song L, Lindquist E, Gruber S, Koptchinskiy A, Zeilinger S, Schmoll M, Martínez P, Sun J, Grigoriev I (2009) Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC genomics 10:567Google Scholar
  170. Sekhar YC, Ahammed SK, Prasad T, Devi RSJ (2017) Identification of Trichoderma species based on morphological characters isolated from rhizosphere of groundnut (Arachis hypogaea L). Int J Sci Environ Technol 6:2056–2063Google Scholar
  171. Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2, 4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358Google Scholar
  172. Shanmugaiah V, Balasubramanian N, Gomathinayagam S, Manoharan P, Rajendran A (2009) Effect of single application of Trichoderma viride and Pseudomonas fluorescens on growth promotion in cotton plants. Afr J Agr Res 4:1220–1225Google Scholar
  173. Sharma P (2011) Complexity of ‘Trichoderma-Fusarium’ interaction and manifestation of biological control. Aust J Crop Sci 5:1027Google Scholar
  174. Sharon E, Orion D, Spiegel Y (1993) Binding of soil microorganisms and red blood cells by the gelatinous matrix and eggs of Meloidogyne javanica and Rotylenchulus reniformis. Fundame Appl Nematolo 16:5–9Google Scholar
  175. Shentu X-P, Liu W-P, Zhan X-H, Yu X-P, Zhang C-X (2013) The elicitation effect of pathogenic fungi on trichodermin production by Trichoderma brevicompactum. Sci World J ​https://doi.org/10.1155/2013/607102.Google Scholar
  176. Shi W-L, Chen X-L, Wang L-X, Gong Z-T, Li S, Li C-L, Xie B-B, Zhang W, Shi M, Li C (2016) Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp. J Exp Bot 67:2191–2205Google Scholar
  177. Sikora RA, Pocasangre L, zum Felde A, Niere B, Vu TT, Dababat A (2008) Mutualistic endophytic fungi and in-planta suppressiveness to plant parasitic nematodes. Biol Control 46:15–23Google Scholar
  178. Singh A, Shukla N, Kabadwal B, Tewari A, Kumar J (2018) Review on Plant-Trichoderma-Pathogen Interaction. Int J Curr Microbiol App Sci 7:2382–2397Google Scholar
  179. Singh RK (2010) ‘Trichoderma: a bio-control agent for management of soil borne diseases’. Retrived January, 14 2016 from http://agropedia.iitk.ac.in
  180. Sivasithamparam K, Ghisalberti E (2014) Secondary metabolism in Trichoderma. Trichoderma and Gliocladium Volume 1: basic biology, taxonomy. Genetics 1:139Google Scholar
  181. Spiegel Y, Sharon E, Bar-Eyal M, Maghodia A, Vanachter A, Van Assche A, Van Kerckhove S, Viterbo A, Chet I (2007) Evaluation and mode of action of Trichoderma isolates as biocontrol agents against plant-parasitic nematodes. IOBC WPRS Bull 30:129Google Scholar
  182. Suman A, Verma P, Yadav AN, Saxena AK (2015) Bioprospecting for extracellular hydrolytic enzymes from culturable thermotolerant bacteria isolated from Manikaran thermal springs. Res J Biotechnol 10:33–42Google Scholar
  183. Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, Research perspectives. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2647-5_7 Google Scholar
  184. Tamura A, Kotani H, Naruto S (1975) Trichoviridin and dermadin from Trichoderma sp. TK-1. J Antibiot 28:161–162Google Scholar
  185. Tansengco M, Tejano J, Coronado F, Gacho C, Barcelo J (2018) Heavy metal tolerance and removal capacity of trichoderma species isolated from mine tailings in itogon, Benguet. Environ Nat Resour J 16:39–57Google Scholar
  186. Tisch D, Schmoll M (2013) Targets of light signalling in Trichoderma reesei. BMC Genom 14:657Google Scholar
  187. Tripathi P, Singh PC, Mishra A, Chauhan PS, Dwivedi S, Bais RT, Tripathi RD (2013) Trichoderma: a potential bioremediator for environmental clean up. Clean Technol Environ 15:541–550Google Scholar
  188. Velázquez-Robledo R, Contreras-Cornejo H, Macías-Rodríguez L, Hernández-Morales A, Aguirre J, Casas-Flores S, López-Bucio J, Herrera-Estrella A (2011) Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism and induction of plant defense responses. Mol Plant Microbe Interact 24:1459–1471Google Scholar
  189. Verma M, Brar SK, Tyagi R, Surampalli R, Valero J (2007a) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37:1–20Google Scholar
  190. Verma V, Gond S, Kumar A, Kharwar R, Strobel G (2007b) The endophytic mycoflora of bark, leaf, and stem tissues of Azadirachta indica A. Juss (Neem) from Varanasi (India). Microb Ecol 54:119–125Google Scholar
  191. Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol Appl Sci 3:432–447Google Scholar
  192. Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015a) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899Google Scholar
  193. Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015b) Alleviation of cold stress in wheat seedlings by Bacillus amyloliquefaciens IARI-HHS2-30,an endophytic psychrotolerant K-solubilizing bacterium from NW Indian Himalayas. Natl J Life Sci 12:105–110Google Scholar
  194. Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015c) Hydrolytic enzymes production by thermotolerant Bacillus altitudinis IARI-MB-9 and Gulbenkiania mobilis IARI-MB-18 isolated from Manikaran hot springs. Int J Adv Res 3:1241–1250Google Scholar
  195. Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016a) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58Google Scholar
  196. Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK, Suman A (2016b) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2016.01.042
  197. Verma P, Yadav AN, Kumar V, Khan A, Saxena AK (2017a) Microbes in Termite Management: Potential Role and Strategies. In: Khan MA, Ahmad W (eds) Termites and Sustainable Management: Volume 2 - Economic Losses and Management. Springer International Publishing, Cham, pp 197-217. doi:10.1007/978-3-319-68726-1_9Google Scholar
  198. Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017b) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crops improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer Nature, Singapore. https://doi.org/10.1007/978-981-10-6593-4_22 Google Scholar
  199. Vey A, Hoagland RE, Butt TM (2001) Toxic metabolites of fungal biocontrol agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CAB International, Bristol, pp 311–346Google Scholar
  200. Vicente M, Cabello A, Platas G, Basilio A, Diez M, Dreikorn S, Giacobbe R, Onishi J, Meinz M, Kurtz M (2001) Antimicrobial activity of ergokonin A from Trichoderma longibrachiatum. J Appl Microbiol 91:806–813Google Scholar
  201. Vinale F, Flematti G, Sivasithamparam K, Lorito M, Marra R, Skelton BW, Ghisalberti EL (2009) Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J Nat Prod 72:2032–2035Google Scholar
  202. Vinale F, Marra R, Scala F, Ghisalberti E, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148Google Scholar
  203. Vinale F, Sivasithamparam K, Ghisalberti E, Marra R, Barbetti M, Li H, Woo S, Lorito M (2008a) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86Google Scholar
  204. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008b) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10Google Scholar
  205. Vinale F, Sivasithamparam K, Ghisalberti EL, Ruocco M, Wood S, Lorito M (2012) Trichoderma secondary metabolites that affect plant metabolism. Nat Prod Commun 7:1545–1550Google Scholar
  206. Vinale F, Sivasithamparam K, Ghisalberti EL, Woo SL, Nigro M, Marra R, Lombardi N, Pascale A, Ruocco M, Lanzuise S (2014) Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol J 8:127–139Google Scholar
  207. Vipul K, Mohammad S, Muksesh S, Sonika P, Anuradha S (2014) Role of secondary metabolites produced by commercial Trichoderma species and their effect against soil borne pathogens. Biosens J 3:2Google Scholar
  208. Vizcaino JA, Luis S, Basilio A, Vicente F, Gutierrez S, Hermosa MR, Monte E (2005) Screening of antimicrobial activities in Trichoderma isolates representing three Trichoderma sections. Mycol Res 109:1397–1406Google Scholar
  209. Wagenaar MM, Clardy J (2001) Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus Phomopsis l ongicolla Isolated from an endangered mint. J Nat Prod 64:1006–1009Google Scholar
  210. Waghunde RR, Shelake RM, Sabalpara AN (2016) Trichoderma: a significant fungus for agriculture and environment. Afr J Agr Res 11:1952–1965Google Scholar
  211. Wang C, Knill E, Glick BR, Défago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gac A derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907Google Scholar
  212. Wardle D, Parkinson D, Waller J (1993) Interspecific competitive interactions between pairs of fungal species in natural substrates. Oecologia 94:165–172Google Scholar
  213. Watanabe N, Akiba T, Kanai R, Harata K (2006) Structure of an orthorhombic form of xylanase II from Trichoderma reesei and analysis of thermal displacement. Acta Cryst D 62:784–792Google Scholar
  214. Weindling R (1934) Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathology 24:1153–1179Google Scholar
  215. Windham M (1986) A mechanism for increased plant growth induced by Trichoderma spp. Phytopathology 76:518–521Google Scholar
  216. Wipf P, Kerekes AD (2003) Structure reassignment of the fungal metabolite TAEMC161 as the phytotoxin viridiol. J Nat Prod 66:716–718Google Scholar
  217. Wong KK, Saddler JN (1992) Trichoderma xylanases, their properties and application. Crit Rev Biotechnol 12:413–435Google Scholar
  218. Woo SL, Lorito M (2007) Exploiting the interactions between fungal antagonists, pathogens and the plant for biocontrol. In: Novel biotechnologies for biocontrol agent enhancement and management. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5799-1_6 Google Scholar
  219. Wu B, Oesker V, Wiese J, Schmaljohann R, Imhoff JF (2014) Two new antibiotic pyridones produced by a marine fungus, Trichoderma sp. strain MF106. Mar Drugs 12:1208–1219Google Scholar
  220. Wu YW, Ouyang J, Xiao XH, Gao WY, Liu Y (2006) Antimicrobial properties and toxicity of anthraquinones by microcalorimetric bioassay. Chin J Chem 24:45–50Google Scholar
  221. Wuczkowski M, Druzhinina I, Gherbawy Y, Klug B, Prillinger H, Kubicek CP (2003) Species pattern and genetic diversity of Trichoderma in a mid-European, primeval floodplain-forest. Microbiol Res 158:125–133Google Scholar
  222. Xia X, Lie TK, Qian X, Zheng Z, Huang Y, Shen Y (2011) Species diversity, distribution, and genetic structure of endophytic and epiphytic Trichoderma associated with banana roots. Microb Ecol 61:619–625Google Scholar
  223. Yadav AN (2018) Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Scientific Microbiol 1:1–5Google Scholar
  224. Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150Google Scholar
  225. Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13Google Scholar
  226. Yadav AN, Verma P, Kumar R, Kumar V, Kumar K (2017b) Current applications and future prospects of eco-friendly microbes. EU Voice 3:21–22Google Scholar
  227. Yadav N, Yadav A (2018) Biodiversity and biotechnological applications of novel plant growth promoting methylotrophs. J Appl Biotechnol Bioeng 5:342-344.Google Scholar
  228. Yadav AN (2019) Endophytic fungi for plant growth promotion and adaptation under abiotic stress conditions. Acta Sci Agric 3:91–93Google Scholar
  229. Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018a) Microbiome in crops: diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, San Diego. https://doi.org/10.1016/B978-0-444-63987-5.00015-3 Google Scholar
  230. Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Singh BP, Saxena AK, Dhaliwal HS (2018b) Actinobacteria from rhizosphere: molecular diversity, distributions and potential biotechnological applications. In: Singh B, Gupta V, Passari A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, pp 13–41. https://doi.org/10.1016/B978-0-444-63994-3.00002-3
  231. Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018c) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-444-63501-3.00001-6 Google Scholar
  232. Yadav AN, Yadav N (2018) Stress-adaptive microbes for plant growth promotion and alleviation of drought stress in plants. Acta Sci Agri 2:85–88Google Scholar
  233. Yao L, Yang Q, Song J, Tan C, Guo C, Wang L, Qu L, Wang Y (2013) Cloning, annotation and expression analysis of mycoparasitism-related genes in Trichoderma harzianum 88. J Microbiol 51:174–182Google Scholar
  234. Yoshihisa H, Zenji S, Fukushi H, Katsuhiro K, Haruhisa S, Takahito S (1989) Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soilborne plant pathogens. Soil Biol Biochem 21:723–728Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sushma Sharma
    • 1
  • Divjot Kour
    • 2
  • Kusam Lata Rana
    • 2
  • Anu Dhiman
    • 3
  • Shiwani Thakur
    • 1
  • Priyanka Thakur
    • 1
  • Sapna Thakur
    • 2
  • Neelam Thakur
    • 4
  • Surya Sudheer
    • 5
  • Neelam Yadav
    • 6
  • Ajar Nath Yadav
    • 2
    Email author
  • Ali A. Rastegari
    • 7
  • Karan Singh
    • 8
  1. 1.Department of AgricultureAkal College of Agriculture, Eternal UniversityBaru Sahib, SirmourIndia
  2. 2.Department of BiotechnologyAkal College of Agriculture, Eternal UniversityBaru Sahib, SirmourIndia
  3. 3.Department of MicrobiologyAkal College of Basic Sciences, Eternal UniversityBaru Sahib, SirmourIndia
  4. 4.Department of ZoologyAkal College of Basic Sciences, Eternal UniversityBaru Sahib, SirmourIndia
  5. 5.Department of Chemistry and BiotechnologyERA Chair of Green Chemistry, Tallinn University of TechnologyTallinnEstonia
  6. 6.Gopi Nath P.G. College, Veer Bahadur Singh Purvanchal UniversityDeoli-Salamatpur, GhazipurIndia
  7. 7.Department of Molecular and Cell Biochemistry, Falavarjan BranchIslamic Azad UniversityIsfahanIran
  8. 8.Department of ChemistryAkal College of Basic Sciences, Eternal UniversityBaru Sahib, SirmourIndia

Personalised recommendations