Advertisement

Thermal Design and Optimization of Heat Engines and Heat Pumps

  • Vivek K. PatelEmail author
  • Vimal J. Savsani
  • Mohamed A. Tawhid
Chapter

Abstract

Heat engines are the devices which convert the thermal energy into mechanical work, while heat pumps transfer heat energy from low temperature to high temperature. In this chapter, thermal modeling of different types of heat engines and heat pumps like Carnot heat engine, Rankine heat engine, Ericsson heat engine, Stirling heat pump, Brayton heat pump, etc. is presented. The objective function of each of the heat engine and the heat pump is derived from the thermal model. Optimization of a derived objective is performed by implementing 11 different metaheuristic algorithms for each heat engine, and heat pump and comparative results are tabulated and discussed.

References

  1. Abusoglu A, Kanoglu M. (2008) ‘First and second law analysis of diesel engine powered cogeneration systems’, Energy Conversion and Management in Turkey, vol. 49, 2026–2031.CrossRefGoogle Scholar
  2. Açıkkalp E. (2014) ‘Entransy analysis of irreversible Carnot-like heat engine and refrigeration cycles and the relationships among various thermodynamic parameters’, Energy Conversion and Management, vol. 80, pp. 535–542.CrossRefGoogle Scholar
  3. Ahmad S.A. and Sunthiram D. (2018) ‘Optimization of diesel engine performance by the Bees Algorithm’, In IOP Conference Series: Materials Science and Engineering, Vol. 319, No. 1, p. 012064.CrossRefGoogle Scholar
  4. Ahmadi M.H., Ahmadi MA, Mellit A, Pourfayaz F, Feidt M. (2016a) ‘Thermodynamic analysis and multi objective optimization of performance of solar dish Stirling engine by the centrality of entransy and entropy generation’, International Journal of Electric Power, Vol. 78,88–95.CrossRefGoogle Scholar
  5. Ahmadi M.H., Ahmadi MA, Pourfayaz F, Bidi M, Hosseinzade H, Feidt M. (2016b) ‘Optimization of powered Stirling heat engine with finite speed thermodynamics’, Energy Conversation and Management, vol. 108, 96–105.CrossRefGoogle Scholar
  6. Ahmadi M.H., Hosseinzade H, Sayyaadi H, Mohammadi AH, Kimiaghalam F. (2013a). Application of the multi-objective optimization method for designing a powered Stirling heat engine: Design with maximized power, thermal efficiency and minimized pressure loss. Renewable Energy, vol. 60, 313–322.CrossRefGoogle Scholar
  7. Ahmadi M.H., Mohammadi AH, Dehghani S, Barranco-Jiménez MA (2013b), ‘Multi-objective hermodynamic-based optimization of output power of solar dish-stirling engine byimplementing an evolutionary algorithm’, Energy Conversation and Management, vol. 75, 438–445.Google Scholar
  8. Ahmadi M.H., Sayyaadi H, Dehghani S, Hosseinzade H. (2013c) ‘Designing a solar powered Stirling heat engine based on multiple criteria: Maximized thermal efficiency and power’, Energy Conversation and Management vol. 75, 282–291.CrossRefGoogle Scholar
  9. Ahmadi M.H., Sayyaadi H, Mohammadi AH, Barranco-Jimenez MA. (2013d) ‘Thermo-economic multi objective optimization of solar dish-stirling engine by implementing evolutionary algorithm’, Energy Conversation and Management, vol. 73, 370–380.CrossRefGoogle Scholar
  10. Ahmadi M.H. and Ahmadi M.A. (2016) ‘Thermodynamic analysis and optimisation of an irreversible radiative-type heat engine by using non-dominated sorting genetic algorithm’. International Journal of Ambient Energy, vol. 37(4), pp. 403–408.Google Scholar
  11. Ahmadi M.H., Ahmadi M.A., Bayat R., Ashouri M. and Feidt M. (2015a) ‘Thermo-economic optimization of Stirling heat pump by using non-dominated sorting genetic algorithm’, Energy Conversion and Management, vol. 91, pp. 315–322.CrossRefGoogle Scholar
  12. Ahmadi M.H., Ahmadi M.A., Mehrpooya M. and Sameti M. (2015b) ‘Thermo-ecological analysis and optimization performance of an irreversible three-heat-source absorption heat pump’, Energy Conversion and Management, vol. 90, pp. 175–183.CrossRefGoogle Scholar
  13. Ahmadi M.H., Ahmadi M.A., Mehrpooya M., Hosseinzade H. and Feidt M. (2014a) ‘Thermodynamic and thermo-economic analysis and optimization of performance of irreversible four-temperature-level absorption refrigeration’, Energy Conversion and Management, vol. 88, pp. 1051–1059.CrossRefGoogle Scholar
  14. Ahmadi M.H., Ahmadi M.A., Mohammadi A.H., Mehrpooya M. and Feidt M. (2014b). ‘Thermodynamic optimization of Stirling heat pump based on multiple criteria’, Energy Conversion and Management, vol. 80, pp. 319–328.CrossRefGoogle Scholar
  15. Ahmadi M.H., Ahmadi M.A., Pourfayaz F. and Bidi M. (2016c) ‘Thermodynamic analysis and optimization for an irreversible heat pump working on reversed Brayton cycle’, Energy Conversion and Management, vol. 110, pp. 260–267.CrossRefGoogle Scholar
  16. Angelino G. and Invernizzi C. (1995) ‘Prospects for real-gas reversed Brayton cycle heat pumps’, International Journal of Refrigeration, vol. 18(4), pp. 272–280.CrossRefGoogle Scholar
  17. Angulo-Brown F. (1991a) ‘An ecological optimization criterion for finite time heat engines’, Journal of Applied Physics, vol. 69(11), 7465–7469.Google Scholar
  18. Angulo-Brown F. (1991b) ‘An ecological optimization criterion for finite–time heat engines’, Journal of Applied Physics, vol. 69(11), 7465–7469.CrossRefGoogle Scholar
  19. Araoz JA, Cardozoa E, Salomona M, Alejo L, Fransson TH (2015) ‘Development and validation of a hermodynamic model for the performance analysis of a gamma Stirling engine prototype’, Applied Thermal Engineering, vol. 83, 16–30.Google Scholar
  20. Arora R, Kaushik SC, Kumar R, Arora R. (2016) ‘Multi-objective thermo-economic optimization of solar parabolic dish Stirling heat engine with regenerative losses using NSGA-II and decision making’, International Journal of Electric Power, vol. 74,25–35.Google Scholar
  21. Babaelahi M, Sayyaadi H. (2015) ‘A new thermal model based on polytropic numerical simulation of Stirling engines’, Applied Energy, vol. 141, 143–159.CrossRefGoogle Scholar
  22. Bǎdescu V. (1992) ‘Optimum operation of a solar converter in combination with a Stirling or Ericsson heat engine’, Energy, vol. 17(6), 601–607.CrossRefGoogle Scholar
  23. Badescu V. (2004) ‘Optimal paths for minimizing lost available work during usual finite-time heat transfer process’, Journal of Non-equilibrium Thermodynamics, vol. 29; 53–73.Google Scholar
  24. Bi Y., Chen L. and Sun F. (2010) ‘Exergetic efficiency optimization for an irreversible heat pump working on reversed Brayton cycle’, Pramana, vol. 74(3), pp. 351–363.CrossRefGoogle Scholar
  25. Blank DA, Davis GW, Wu C. (1994) ‘Power optimization of an endoreversible Stirling cycle with regeneration’, Energy, vol. 19, 125–133.Google Scholar
  26. Blank D. A. and Wu C. (1996) ‘Power limit of an endoreversible Ericsson cycle with regeneration’, Energy Conversion and Management, vol. 37(1), pp. 59–66.CrossRefGoogle Scholar
  27. Blank D. A. and Wu C. (1998) ‘Finite-time power limit for solar-radiant Ericsson engines in space applications’, Applied Thermal Engineering, vol. 18(12), pp. 1347–1357.CrossRefGoogle Scholar
  28. Bojić M. (1997) ‘Cogeneration of power and heat by using endoreversible Carnot engine’, Energy Conversion and Management, vol. 38(18), pp. 1877–1880.CrossRefGoogle Scholar
  29. C.Y. Cheng, C.K. Chen (1997) ‘The ecological optimization of an irreversible Carnot heat engine’, Journal of Physics D: Applied Physics, vol. 30, 1602–1609.CrossRefGoogle Scholar
  30. CA. Ordonez (2000) ‘Liquid nitrogen fueled, closed Brayton cycle cryogenic heat engine’, Energy Conversion and Management, vol. 41, 331–341.CrossRefGoogle Scholar
  31. Campos MC, Vargas JVC, Ordonez JC. (2012) ‘Thermodynamic optimization of a Stirling engine’, Energy, vol. 44(1), 902–910.CrossRefGoogle Scholar
  32. Chen J. and Andresen B. (1995) ‘Optimal analysis of primary performance parameters for an endoreversible absorption heat pump’, Heat Recovery Systems and CHP, vol. 15(8), pp. 723–731.CrossRefGoogle Scholar
  33. Chen J. (1994) ‘The maximum power output and maximum efficiency of an irreversible Carnot heat engine’, Journal of Physics D: Applied Physics, vol. 27(6), p. 1144.Google Scholar
  34. Chen Jincan, (1999) The general performance characteristics of an irreversible absorption heat pump operating between four temperature levels. Journal of Physics D: Applied Physics, 32 (12):1428–1433.CrossRefGoogle Scholar
  35. Chen J., Wu C. and Kiang R.L. (1996) ‘Maximum specific power output of an irreversibleradiant heat engine’, Energy Conversion and Management, vol. 37(1), pp. 17–22.CrossRefGoogle Scholar
  36. Chen L., Ni N., Wu C. and Sun F. (1999) ‘Performance analysis of a closed regenerated Brayton heat pump with internal irreversibilities’ International Journal of Energy Research, vol. 23(12), pp. 1039–1050.CrossRefGoogle Scholar
  37. Chen L., Qin X., Sun F. and Wu C. (2005) ‘Irreversible absorption heat-pump and its optimal performance’, Applied Energy, vol. 81(1), pp. 55–71.CrossRefGoogle Scholar
  38. Chen L., Song H. and Sun F. (2010) ‘Endoreversible radiative heat engine configuration for maximum efficiency’, Applied Mathematical Modelling, vol. 34(7), pp. 1710–1720.MathSciNetzbMATHCrossRefGoogle Scholar
  39. Chen L., Sun F. and Wu C. (1997) ‘Influence of heat transfer law on the performance of a Carnot engine’, Applied Thermal Engineering, vol. 17(3), pp. 277–282.CrossRefGoogle Scholar
  40. Chen L., Sun F. and Wu C. (2007) ‘Power optimization of a regenerated closed variable temperature heat reservoir Brayton cycle’, International Journal of Sustainable Energy, vol. 26(1), pp. 1–17.CrossRefGoogle Scholar
  41. Chen L., Xia S. and Sun F. (2013) ‘Maximum power output of multistage irreversible heat engines under a generalized heat transfer law by using dynamic programming’, Scientia Iranica, vol. 20(2), pp. 301–312.Google Scholar
  42. Chen L., Zhang W. and Sun F. (2007) ‘Power, efficiency, entropy-generation rate and ecological optimization for a class of generalized irreversible universal heat-engine cycles’, Applied Energy, vol. 84(5), pp. 512–525.Google Scholar
  43. Chen L., Zhou J., Sun F. and Wu C. (2004) ‘Ecological optimization for generalized irreversible Carnot engines. Applied Energy, 77(3), pp. 327–338.CrossRefGoogle Scholar
  44. Chen L., Zhu X., Sun F. and Wu C. (2006) ’Exergy-based ecological optimization of linear phenomenological heat-transfer law irreversible Carnot-engines’, Applied Energy, vol. 83(6), pp. 573–582.CrossRefGoogle Scholar
  45. Chen L.G., Zheng J.L., Sun F.R. and Wu, C. (2001) ‘Power density analysis and optimization of a regenerated closed variable-temperature heat reservoir Brayton cycle’, Journal of Physics D: Applied Physics, vol. 34(11), p. 1727.CrossRefGoogle Scholar
  46. Chenab J, Schoutenb JA (1999) ‘The comprehensive influence of several major irreversibilities on the performance of an Ericsson heat engine’, Applied Thermal Engineering, vol. 19(5), 555–564.CrossRefGoogle Scholar
  47. Cheng CH, Yu YJ. (2010) ‘Numerical model for predicting thermodynamic cycle and thermal efficiency of a beta-type Stirling engine with rhombic-drive mechanism’, Renewable Energy, vol. 35(11), 590–601.CrossRefGoogle Scholar
  48. Cheng CY, Chen CK. (1999) ‘Ecological optimization of an irreversible Brayton heat engine’, Journal of Physics D: Applied Physics, vol. 32, 350–357.CrossRefGoogle Scholar
  49. Chin Wu (1991) ‘Power optimization of an endoreversible brayton gas heat engine’, Energy Conversion and Management, vol. 31, No. 6, pp. 561–565.CrossRefGoogle Scholar
  50. Duan C, Wang X, Shu S, Jing C, Chang H. (2014) ‘Thermodynamic design of Stirling engine using multi-objective particle swarm optimization algorithm’, Energy Conversion and Management, vol. 84, 88–96.CrossRefGoogle Scholar
  51. Erbay LB, Yavuz H. (1999) ‘Analysis of an irreversible Ericsson engine with a realistic regenerator’, Applied Energy, vol. 62, 155–167.CrossRefGoogle Scholar
  52. Esfahani I.J., Lee S. and Yoo C. (2015) ‘Evaluation and optimization of a multi-effect evaporation–absorption heat pump desalination based conventional and advanced exergy and exergoeconomic analyses’, Desalination, vol. 359, pp. 92–107.Google Scholar
  53. Ferreira AC, Nunes ML, Teixeira JCF, Martins LASB, Teixeira SFCF (2016) ‘Thermody and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes’, Energy, vol. 111, 1–17.Google Scholar
  54. Göktun S. and Özkaynak S. (1997) ‘Optimum performance of a corrugated, collector-driven, irreversible Carnot heat engine and absorption refrigerator’, Energy, vol. 22(5), pp. 481–485.Google Scholar
  55. Göktun S., Özkaynak S. and Yavuz H. (1993) ‘Design parameters of a radiative heat engine’, Energy, vol. 18 (6), pp. 651–655.CrossRefGoogle Scholar
  56. H. Sayyaadi, M.H. Ahmadi, S. Dehghani, (2015) ‘Optimal Design of a Solar-Driven Heat Engine Based on Thermal and Ecological Criteria’, Journal of Energy Engineering, vol. 141(3), 1–7.CrossRefGoogle Scholar
  57. H. Song, L. Chen, F. Sun (2007a) ‘Endoreversible heat engines for maximum power output with fixed duration and radiative heat-transfer law’, Applied Energy, vol. 84(4), 374–388.Google Scholar
  58. H. Song, L. Chen, J. Li, F. Sun, C. Wu (2006) ‘Optimal configuration of a class of endoreversible heat engines with linear phenomenological heat transfer law’, Journal of Applied Physics, vol. 100(12), 124907.Google Scholar
  59. Han Y., Wang D., Zhang C. and Zhu Y. (2017) ‘The entransy degeneration and entransy lossequations for the generalized irreversible Carnot engine system’, International Journal of Heat and Mass Transfer, vol. 106, pp. 895–907.CrossRefGoogle Scholar
  60. Holman JP. (1980) Thermodynamics, McGraw-Hill, New York.Google Scholar
  61. Hooshang M, Moghadam RA, Nia SA, Masouleh MT (2015) ‘Optimization of Stirling engine design parameters using neural networks’, Renewable Energy, vol. 74, 855–866.CrossRefGoogle Scholar
  62. Hosseinzade H, Sayyaadi H, Babaelahi M. (2015) ‘A new closed-form analytical thermal model for simulating Stirling engines based on polytropic-finite speed thermodynamics’, Energy Conversion and Management, vol. 90, 395–408.Google Scholar
  63. Huang Y., Sun D. and Kang Y. (2008) ‘Performance optimization for an irreversible four temperature-level absorption heat pump’, International Journal of Thermal Sciences, vol. 47(4), pp. 479–485.CrossRefGoogle Scholar
  64. Ibrahim O.M. and Klein S.A. (1995) ‘High-power multi-stage Rankine cycles’, Journal of Energy Resources Technology, vol. 117(3), pp. 192–196.Google Scholar
  65. Jafari M, Parhizkar MJ, Amani E, Naderan H. (2016) ‘Inclusion of entropy generation minimization in multi-objective CFD optimization of diesel engines’, Energy, vol. 114, 526–541.CrossRefGoogle Scholar
  66. Kaushik SC, Kumar S. (2000) ‘Finite time thermodynamic evaluation of irreversible Ericsson and Stirling heat pump cycles’, In: Proceedings of 4th Minsk International Seminar on Heat Pipes, Heat Pumps Refrigerators, Minsk, Belarus, p. 113–26.Google Scholar
  67. Kaushik SC, Tyagi SK, Bose SK, Singhal MK. (2001) ‘Performance evaluation of irreversible Stirling and Ericsson heat pump cycle’, International Journal of Thermal Science, vol. 41, 193–200.Google Scholar
  68. Kaushik S. C. and Kumar S. (2001) ‘Finite time thermodynamic evaluation of irreversible Ericsson and Stirling heat engines’, Energy Conversion and Management, vol. 42(3), pp. 295–312.CrossRefGoogle Scholar
  69. Khaliq A. (2004) ‘Finite-time heat-transfer analysis and generalized power-optimization of an endoreversible Rankine heat-engine’, Applied Energy, vol. 79(1), pp. 27–40.Google Scholar
  70. Kodal A., Sahin B. and Yilmaz T. (2000) ‘A comparative performance analysis of irreversible Carnot heat engines under maximum power density and maximum power conditions’, Energy Conversion and Management, 41(3), pp. 235–248.CrossRefGoogle Scholar
  71. Kodal A., Sahin B., Ekmekci I. and Yilmaz T. (2003) ‘Thermoeconomic optimization for irreversible absorption refrigerators and heat pumps’, Energy Conversion and Management, vol. 44(1), pp. 109–123.CrossRefGoogle Scholar
  72. Kongtragool B, Wongwises S. (2003) ‘A review of solar-powered Stirling engines and low temperature differential Stirling engines’, Renewable and Sustainable Energy Reviews, vol. 7, 131–154.CrossRefGoogle Scholar
  73. Kongtragool B, Wongwises S. (2007) ‘Performance of a twin power piston low temperature differential Stirling engine powered by a solar simulator’, Solar Energy, vol. 81, 884–895.CrossRefGoogle Scholar
  74. Kumar R, Kaushik SC, Kumar R. (2015) ‘Performance analysis of brayton heat engine at maximum efficient power using temperature dependent specific heat of working fluid’, Journal of Thermal Engineering, Vol. 1, No. 2, pp. 345–354.CrossRefGoogle Scholar
  75. Lee W.Y. and Kim S.S. (1992) ‘Finite time optimization of a Rankine heat engine’, Energy Conversion and Management, vol. 33(1), 59–67.CrossRefGoogle Scholar
  76. Leung D.Y., Luo Y. and Chan T.L. (2006) ‘Optimization of exhaust emissions of a diesel engine fuelled with biodiesel’, Energy & Fuels, vol. 20(3), pp. 1015–1023.CrossRefGoogle Scholar
  77. Li R, Grosu L, Queiros-Conde D. (2016) ‘Multi-objective optimization of Stirling engine using Finite Physical Dimensions Thermodynamics (FPDT) method’, Energy Conversion and Management, vol. 124, 517–527.Google Scholar
  78. Li Y., Fu L., Zhang S. and Zhao X. (2011) ‘A new type of district heating system based on distributed absorption heat pumps’, Energy, vol. 36(7), pp. 4570–4576.CrossRefGoogle Scholar
  79. Lin B, Chen J. (2003) ‘Optimization on the performance of a harmonic quantum Brayton heat engine’, Journal of Applied Physics, vol. 94, 6185.CrossRefGoogle Scholar
  80. Luo Z, Sultan U, Ni M, Peng H, Shi B, Xiao G. (2016) ‘Multi-objective optimization for GPU3 Stirling engine by combining multi-objective algorithms’, Renewable Energy, vol. 94, 114–125.CrossRefGoogle Scholar
  81. Lurie E. and Kribus A. (2010) ‘Analysis of a microscale ‘saturation phase-change internal carnot engine’, Energy Conversion and Management, vol. 51(6), pp. 1202–1209.CrossRefGoogle Scholar
  82. Maheshwari G., A. I. Khandwawala and S. C. Kaushik (2005a) ‘A Comparative Performance Analysis of an Endoreversible Heat Engine with Thermal Reservoir of Finite Heat Capacitance Under Maximum Power Density and Maximum Power Conditions’ International Journal of Ambient Energy, vol. 26, 147–154.CrossRefGoogle Scholar
  83. Maheshwari G., A. I. Khandwawala, and S. C. Kaushik (2005b) ‘Maximum Power Density Analysis for an Irreversible Radiative Heat Engine’, International Journal of Ambient Energy, vol. 26, 71–80.CrossRefGoogle Scholar
  84. Maheshwari G., Chaudhary S. and Somani S.K. (2009) ‘Performance analysis of a generalized radiative heat engine based on new maximum efficient power approach’ International Journal of Low-Carbon Technologies, vol. 4(1), pp. 9–15.CrossRefGoogle Scholar
  85. Maheshwari G., Chaudhary S. and Somani S. K. (2007) Optimum criteria on the performance of a generalised irreversible Carnot heat engine based on a thermoeconomic approach, International Journal of Ambient Energy 28(4):197–204.CrossRefGoogle Scholar
  86. Maheshwari G., Khandwawala A.I. and Kaushik S.C. (2005c) ‘Maximum power density analyses for an irreversible radiative heat engine’, International Journal of Ambient Energy, vol. 26(2), pp. 71–80.CrossRefGoogle Scholar
  87. Mohammad H. Ahmadi, Mohammad Ali Ahmadi, Mehdi Mehrpooya, Seyed Mohsen Pourkiaei and Maryam Khalili (2016) ‘Thermodynamic analysis and evolutionary algorithm based on multi-objective optimisation of the Rankine cycle heat engine’, International Journal of Ambient Energy, vol. 37(4), 363–371.Google Scholar
  88. Ni N., Chen L., Wu C. and Sun F. (1999) ‘Performance analysis for endoreversible closed regenerated Brayton heat pump cycles’, Energy Conversion and Management, vol. 40(4), pp. 393–406.CrossRefGoogle Scholar
  89. Özkaynak S., Gokun S. and Yavuz H. (1994) ‘Finite-time thermodynamic analysis of a radiative heat engine with internal irreversibility’, Journal of Physics D: Applied Physics, vol. 27(6), p. 1139.CrossRefGoogle Scholar
  90. Park H. and Kim M.S. (2014) ‘Thermodynamic performance analysis of sequential Carnot cycles using heat sources with finite heat capacity’, Energy, vol. 68, pp. 592–598.CrossRefGoogle Scholar
  91. Patel VK, Savsani VJ, Mudgal A. (2017) ‘Many objective thermodynamic optimization of Stirling heat engine’, Energy, vol. 125, 629–642.CrossRefGoogle Scholar
  92. Patel VK, Savsani VJ (2016) ‘Multi-objective optimization of a Stirling heat engine using TS-TLBO (tutorial training and self-learning inspired teaching-learning based optimization) algorithm’, Energy, vol. 95, 528–541.CrossRefGoogle Scholar
  93. Petrescu S, Harman C, Costea M, Popescu G, Petre C, Florea T. (2002) ‘Analysis and optimization of solar/dish Stirling engines’, In: Proceedings of the 31st American Solar Energy Society Annual Conference, 15–20, USA.Google Scholar
  94. Pohit G. and Misra D. (2013) ‘Optimization of performance and emission characteristics of diesel engine with biodiesel using grey-taguchi method’, Journal of Engineering,Google Scholar
  95. Punnathanam V, Kotecha P. (2016) ‘Effective multi-objective optimization of Stirling engine systems’, Applied Thermal Engineering, vol. 108, 261–276.CrossRefGoogle Scholar
  96. Punov P., Milkov N., Danel Q., Perilhon C., Podevin P. and Evtimov T. (2017), ‘Optimization of automotive Rankine cycle waste heat recovery under various engine operating condition’, In AIP Conference Proceedings, Vol. 1814, No. 1, p. 020074, AIP Publishing.Google Scholar
  97. Qin X., Chen L., Sun F. and Wu C. (2005) ‘Frequency-dependent performance of an endoreversible Carnot engine with a linear phenomenological heat-transfer law’, Applied Energy, vol. 81(4), pp. 365–375.CrossRefGoogle Scholar
  98. Raman R, Maheshwari G. (2017) ‘Performance analysis of a generalised radiative heat engine based on new maximum efficient power density approach’, International Journal of Ambient Energy, vol. 38(8), 819–825.Google Scholar
  99. Ringler J., Seifert M., Guyotot V. and Hübner W. (2009) ‘Rankine cycle for waste heat recovery of IC engines’, SAE International Journal of Engines, vol. 2(2009-01-0174), pp. 67–76.CrossRefGoogle Scholar
  100. S. C. Kaushik, S. K. Tyagi (2002) ‘Finite time thermodynamic analysis of an irreversible regenerative closed cycle brayton heat engine’, International Journal of Solar Energy, Vol. 22(34), pp. 141–151, India.Google Scholar
  101. Sahin B, Kodal A, Kaya SS. (1998) ‘A comparative performance analysis of irreversible regenerative reheating Joule–Brayton engines under maximum power density and maximum power conditions’, Journal of Physics D: Applied Physics, vol. 31, 2125–2131.CrossRefGoogle Scholar
  102. Sahin B, Kodal A, Yavuz H. (1995) ‘Efficiency of a Joule-Brayton engine at maximum power density’, Journal of Physics D: Applied Physics, vol. 28, 1309–1313, UK.Google Scholar
  103. Sahin B, Kodal A, Yilmaz T, Yavuz H. (1996a), ‘Maximum power density analysis of an irreversible Joule–Brayton engine’, Journal of Physics D: Applied Physics, vol. 29, 1162–1167, UK.Google Scholar
  104. Şahi̇n B., Kodal A. and Yavuz H. (1996b) ‘Maximum power density for an endoreversible Carnot heat engine’, Energy, vol. 21(12), pp. 1219–1225.CrossRefGoogle Scholar
  105. Sahraie H., Mirani M.R., Ahmadi M.H. and Ashouri M. (2015) ‘Thermo-economic and thermodynamic analysis and optimization of a two-stage irreversible heat pump’, Energy Conversion and Management, vol. 99, pp. 81–91.CrossRefGoogle Scholar
  106. Salas N.S., Velasco S. and Hernández A.C. (2002) ‘Unified working regime of irreversible Carnot-like heat engines with nonlinear heat transfer laws’, Energy Conversion and Management, vol. 43(17), pp. 2341–2348.CrossRefGoogle Scholar
  107. Senft JR. (1993) Ringbom Stirling Engines, Oxford University Press, New York.Google Scholar
  108. Sogut OS, Ust Y, Sahin B. (2006) ‘The effects of intercooling and regeneration on the thermo ecological performance analysis of an irreversible-closed Brayton heat engine with variable-temperature thermal reservoirs’, Journal of Physics D: Applied Physics, vol. 39, 4713–4721.CrossRefGoogle Scholar
  109. Sogut O. S., and Durmayaz A. (2006) ‘Ecological performance optimization of a solar-driven heat engine’, Energy Institute, vol. 79(4), 246–250.Google Scholar
  110. Song H., Chen L. and Sun F. (2007a) ‘Endoreversible heat-engines for maximum power-output with fixed duration and radiative heat-transfer law’, Applied Energy, 84(4), pp. 374–388.CrossRefGoogle Scholar
  111. T Yilmaz (2007) ‘Performance optimization of a Joule–Brayton engine based on the efficient power criterion Article in Proceedings of the Institution of Mechanical Engineers Part A’, Journal of Power and Energy, vol. 221(5), 603–607.Google Scholar
  112. T.B. Chang (2007) ‘Exergetic Effciency Optimization for an Irreversible Carnot Heat Engine’, Journal of Mechanics, vol. 23(2), 181–186.CrossRefGoogle Scholar
  113. Toghyani S, Kasaeian A, Ahmadi MH. (2014a) ‘Multi-objective optimization of Stirling engine using non-ideal adiabatic method’, Energy Conversion and Management; vol. 80, 54–62.CrossRefGoogle Scholar
  114. Toghyani S, Kasaeian A, Hashemabadi SH, Salimi M. (2014b) ‘Multi-objective optimization of GPU3 Stirling engine using third order analysis’, Energy Conversion and Management, vol. 87, 521–529.CrossRefGoogle Scholar
  115. Tyagi SK, Kuashik SC, Salhotra R. (2002a) ‘Ecological optimization of irreversible Stirling and Ericsson heat pump cycles’, Journal of Physics D: Applied Physics, vol. 35, 2058–65.CrossRefGoogle Scholar
  116. Tyagi S. K., Kaushik S. C. and Salhotra R. (2002b) ‘Ecological optimization and performance study of irreversible Stirling and Ericsson heat engines’, Journal of Physics D: Applied Physics, 35(20), pp. 2668–2675.CrossRefGoogle Scholar
  117. Tyagi S.K., Chen J. and Kaushik S.C. (2004) ‘Thermoeconomic optimization and parametric study of an irreversible Stirling heat pump cycle’, International Journal of Thermal Sciences, 43(1), pp. 105–112.CrossRefGoogle Scholar
  118. Ust Y, Sahin B, Kodal A. (2006) ‘Performance analysis of an irreversible Brayton heat engine based on ecological coefficient of performance criterion’, International Journal of Thermal Sciences, vol. 45, 94–101.CrossRefGoogle Scholar
  119. Üst Y., Sahin B. and Kodal A. (2005) ‘Ecological coefficient of performance (ECOP) optimization for generalized irreversible Carnot heat engines’, Journal of the Energy Institute, vol. 78(3), pp. 145–151.CrossRefGoogle Scholar
  120. Ust Y., Sahin B., Kodal A., Akcay I. H. (2006) ‘Ecological coefficient of performance analysis and optimization of an irreversible regenerative-Brayton heat engine’, Applied Energy, vol. 83(6), 558–572.CrossRefGoogle Scholar
  121. Wahono B., Ogai H., Ogawa M., Kusaka J. and Suzuki Y. (2012) ‘December. Diesel engine optimization control methods for reduction of exhaust emission and fuel consumption’, In System Integration (SII), 2012 IEEE/SICE International Symposium, pp. 722–727.Google Scholar
  122. Walker G. (1980) Stirling engines, Clarendon Press, Oxford.Google Scholar
  123. White A.J., (2009) ‘Thermodynamic analysis of the reverse Joule–Brayton cycle heat pump for domestic heating’, Applied Energy, vol. 86(11), pp. 2443–2450.CrossRefGoogle Scholar
  124. Wickman D.D., Senecal P.K. and Reitz R.D. (2001) ‘Diesel engine combustion chamber geometry optimization using genetic algorithms and multi-dimensional spray and combustion modeling’ (No. 2001-01-0547).Google Scholar
  125. Wu C. (1988) ‘Power optimization of a finite-time Carnot heat engine’, Energy, vol. 13(9), pp. 681–687.Google Scholar
  126. Wu C., Chen L. and Sun F. (1998) ‘Optimization of steady flow heat pumps’, Energy Conversion and Management, vol. 39(5–6), pp. 445–453.CrossRefGoogle Scholar
  127. Wu F., Chen L., Sun F., Wu C. and Zhu Y. (1998) ‘Performance and optimization criteria for forward and reverse quantum Stirling cycles’, Energy Conversion and Management, vol. 39(8), pp. 733–739.CrossRefGoogle Scholar
  128. Wu Z., Fu L., Gao Y., Yu X., Deng J. and Li L. (2016) ‘Thermal efficiency boundary analysis of an internal combustion Rankine cycle engine’, Energy, vol. 94, pp. 38–49.CrossRefGoogle Scholar
  129. Xingcai L, Zhen H, Wugao Z, Degang L. (2010) ‘The influence of ethanol additives on the performance and combustion characteristics of diesel engines’, Combustion Science and Technology, Volume-176, Issue-8, 1309–1329.Google Scholar
  130. Xu L. (2016) ‘Thermodynamic Analysis of Stirling Heat Pump based on Thermo-economic Optimization Criteria’, In MATEC Web of Conferences (Vol. 61).Google Scholar
  131. YC huang, CI Hung, Chen CK, (2000) ‘An ecological exergy analysis for an irreversible Brayton engine with an external heat source’, Journal of Power and Energy, vol. 214, 413.Google Scholar
  132. Zare SH, Tavakolpour-Saleh AR (2016) ‘Frequency-based design of a free piston Stirling engine using genetic algorithm’, Energy, vol. 109, 466–480.CrossRefGoogle Scholar
  133. Zhan Y.B., Ma P.C. and Zhu X.Q. (2011) ‘Ecological optimization for a generalized irreversible Carnot engine with a universal heat transfer law’, Procedia Environmental Sciences, vol. 11, pp. 945–952.CrossRefGoogle Scholar
  134. Zhang Y, Lin B, Chen J. (2007) ‘Optimum performance characteristics of an irreversible solar driven Brayton heat engine at the maximum overall efficiency’, Renewable Energy, vol. 32, 856–867.CrossRefGoogle Scholar
  135. Zhang Y, Qu C, Lin B, Chen J. (2006) ‘The Regenerative Criteria of an Irreversible Brayton Heat Engine and its General Optimum Performance Characteristics’, Journal of Energy Resources Technology, vol. 128(3), 216–222.CrossRefGoogle Scholar
  136. Zhang L., Chen L. and Sun F. (2016) ‘Power optimization of chemically driven heat engine based on first and second order reaction kinetic theory and probability theory’, Physica A: Statistical Mechanics and its Applications, vol. 445, pp. 221–230.MathSciNetzbMATHCrossRefGoogle Scholar
  137. Zhao Y, Chen J. (2007) ‘Optimum performance analysis of an irreversible Diesel heat engine affected by variable heat capacities of working fluid’, Energy Conversion and Management, vol. 48, 2595–2603.Google Scholar
  138. Zhao Y, Lin B, Zhang Y, Chen J. (2006) ‘Performance analysis and parametric optimum design of an irreversible Diesel heat engine’, Energy Conversion and Management, vol. 47, 3383–3392.CrossRefGoogle Scholar
  139. Zheng S, Lin G. (2010) ‘Optimization of power and efficiency for an irreversible Diesel heatGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vivek K. Patel
    • 1
    Email author
  • Vimal J. Savsani
    • 2
  • Mohamed A. Tawhid
    • 3
  1. 1.Department of Mechanical Engineering, School of TechnologyPandit Deendayal Petroleum UniversityRaisan, GandhinagarIndia
  2. 2.Department of Mechanical EngineeringPandit Deendayal Petroleum UniversityRaisan, GandhinagarIndia
  3. 3.Department of Mathematics and StatisticsThompson Rivers UniversityKamloopsCanada

Personalised recommendations