Advertisement

Assessing Inquiry-Based Mathematics Education with Both a Summative and Formative Purpose

  • Maud ChanudetEmail author
Chapter
Part of the ICME-13 Monographs book series (ICME13Mo)

Abstract

In this chapter I present some of the results of a study aiming to learn if and how using an assessment tool such as a grid of criteria, can be useful for summative assessment and encourage formative assessment processes in the case of inquiry-based mathematics education. I focus my research on a course centred on problem solving in the canton of Geneva (Switzerland). In the first part, I provide a synthesis of teachers’ points of view about this course relative to problems they submitted to students, research narrative chosen as a means to assess students and the assessment of students’ problem solving competencies. I then describe how it leads to a collaborative work that aims to elaborate a grid of criteria of research narratives to assess students’ problem solving competencies with both a summative and formative purpose. Finally, I describe an exploratory study; an analysis of two lessons taught by a teacher who uses the grid of criteria, in order to understand if and how she refers to these criteria to develop informal formative assessment.

Supplementary material

References

  1. Allal, L. (2008a). Conceptualiser les outils d’évaluation des apprentissages. In G. Baillat, J.-M. De Ketele, C. Thélot, & L. Paquay, Evaluer pour former. Outils, dispositifs et acteurs (pp. 71–82). Bruxelles: De Boeck.Google Scholar
  2. Allal, L. (2008b). Evaluation des apprentissages. In A. Van Zanten (Ed.), Dictionnaire de l’éducation (pp. 311–314). Paris: Presses Universitaires de France.Google Scholar
  3. Allal, L. (2011, June). «Assessment for learning» culture in the classroom… and beyong. Communication presented at the International Seminar on Assessment for Learning, Solstrand, Norway.Google Scholar
  4. Arsac, G., Germain, G., & Mante, M. (1991). Problème ouvert et situation-problème. IREM de Lyon.Google Scholar
  5. Artigue, M., & Blomhøj, M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM Mathematics Education, 45(6), 797–810.  https://doi.org/10.1007/s11858-013-0506-6.CrossRefGoogle Scholar
  6. Artigue, M., & Houdement, C. (2007). Problem solving in France: Didactic and curricular perspectives. ZDM Mathematics Education, 39(5–6), 365–382.  https://doi.org/10.1007/s11858-007-0048-x.CrossRefGoogle Scholar
  7. Black, P. (2013). Formative and summative aspects of assessment: Theoretical and research foundations in the context of pedagogy. In J. H. McMillan (Ed.), SAGE handbook of research on classroom assessment. Los Angeles: Sage.Google Scholar
  8. Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: Principles, Policy & Practice, 5(1), 7–74.CrossRefGoogle Scholar
  9. Bloom, B.-S. (1968). Learning for mastery. Evaluation Comment, 1(2), 1–12.Google Scholar
  10. Bonafé, F. (1993). Les narrations de recherche, un outil pour apprendre à démontrer. Repères IREM, 12, 5–14.Google Scholar
  11. Bonafé, F., Sauter, M., Chevallier, A., Combes, M.-C., Deville, A., Dray, L., & Robert, J.-P. (2002). Les narrations de recherche du primaire au Lycée. Brochure APMEP, 151.Google Scholar
  12. Brousseau, G. (1998). La théorie des situations didactiques. Grenoble: La pensée sauvage.Google Scholar
  13. Charnay, R. (1988). Apprendre (par) la résolution de problèmes. Petit x, 42(3), 21–29.Google Scholar
  14. Chevallard, Y. (1994). Les processus de transposition didactique et leur théorisation. In G. Arsac, Y. Chevallard, J.-L. Martinand, & A. Tiberghien (Eds.), La transposition didactique à l’épreuve. La pensée sauvage: Grenoble.Google Scholar
  15. Chevallier, A. (1992). Narration de recherche: Un nouveau type d’exercice scolaire. Petit x, 33, 71–79.Google Scholar
  16. Dorier, J.-L., & Garcia, F. J. (2013). Challenges and opportunities for the implementation of inquiry-based learning in day-to-day teaching. ZDM Mathematics Education, 45(6), 837–849.CrossRefGoogle Scholar
  17. Dorier, J.-L., & Maass, K. (2014). Inquiry-based mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 300–304). The Netherlands: Springer.Google Scholar
  18. Duschl, R. A. (2003). Assessment of inquiry. In J. M. Atkin & J. E. Coffey (Eds.), Everyday assessment in the science classroom (pp. 41–59). Washington, DC: National Science Teachers Association Press.Google Scholar
  19. Earl, L. M. (2003). Assessment as learning: Using classroom assessment to maximize student learning. Corwin Press.Google Scholar
  20. Gandit, M. (2016, January). Effets de différentes modalités d’évaluation formative sur l’évolution du milieu de l’élève. Presented at the 28ème colloque de l’Admée-Europe. Evaluations et apprentissages, Université de Lisbonne, Lisbonne, Portugal.Google Scholar
  21. Gerard, F.-M. (2010). L’évaluation des compétences à travers des situations complexes. La formation des enseignants en Europe (pp. 231–241). De Boeck: Bruxelles.Google Scholar
  22. Goos, M. (2014). Mathematics classroom assessment. In S. Lerman (Ed.), Encyclopedia of mathematics education. Dordrecht, Heidelberg, New York, London: Springer.Google Scholar
  23. Halmos, P. R. (1980). The heart of mathematics. The American Mathematical Monthly, 87(7), 519–524.CrossRefGoogle Scholar
  24. Harlen, W. (2012). On the relationship between assessment or formative and summative purposes. In J. Gardner (Ed.), Assessment and learning (2nd ed., pp. 87–102). Londres: Sage.CrossRefGoogle Scholar
  25. Harlen, W. (2013). Assessment & inquiry-based science education: Issues in policy and practice. Trieste, Italy: Global Network of Science Academies (IAP) Science Education Programme (SEP).Google Scholar
  26. Hersant, M. (2010). Empirisme et rationalité au cycle 3, vers la preuve en mathématiques. Mémoire complémentaire pour l’Habilitation à diriger des recherches, Université de Nantes.Google Scholar
  27. Hersant, M. (2012). Recherche et résolution de problèmes dans l’enseignement des mathématiques: Une étude didactique pour identifier les savoirs et les apprentissages possibles. In M. L. Elalouf, A. Robert, A. Belhadjin, & M. F. Bishop (Eds.), Les didactiques en question(s), états des lieux et perspectives pour la recherche et la formation (pp. 192–202). Bruxelles: De Boeck.Google Scholar
  28. Julo, J. (2002). Des apprentissages spécifiques pour la résolution de problèmes? Grand N, 69, 31–52.Google Scholar
  29. Lepareur, C. (2016). L’évaluation dans les enseignements scientifiques fondés sur l’investigation: Effets de différentes modalités d’évaluation formative sur l’autorégulation des apprentissages (Sciences de l’éducation). Université Grenoble Alpes.Google Scholar
  30. Liljedahl, P., Santos-Trigo, M., Malaspina, U., & Bruder, R. (2016). In G. Kaiser (Ed.), Problem solving in mathematics education. Springer Open. Retrieved from http://link.springer.com/book/10.1007%2F978-3-319-40730-2.
  31. Monaghan, J., Pool, P., Roper, T., & Threlfall, J. (2009). Open-start mathematics problems: An approach to assessing problem solving. Teaching Mathematics and Its Application, 28, 21–31.CrossRefGoogle Scholar
  32. Mottier Lopez, L. (2012). La régulation des apprentissages en classe. Bruxelles: De Boeck. Retrieved from https://archive-ouverte.unige.ch/unige:24531.
  33. Nicol, D. J., & Macfarlane-Dick, D. (2006). Formative assessment and self-regulated learning: A model and seven principles of good feedback practice. Studies in Higher Education, 31(2), 199–218.CrossRefGoogle Scholar
  34. Pilet, J., & Horoks, J. (2015). Une recherche en cours sur les pratiques enseignantes d’évaluation des apprentissages des collégiens en algèbre. In A.-C. Mathé & E. Mounier (Eds.), Actes du séminaire national de didactique des mathématiques (pp. 89–97). Paris.Google Scholar
  35. Pólya, G. (1945). How to solve it. Princeton, NJ: Princeton University.Google Scholar
  36. Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg-Henriksson, H., & Hemmo, V. (2007). Science education now: A renewed pedagogy for the future of Europe. Bruxelles: Commission Européenne. Retrieved from http://ec.europa.eu.
  37. Ruiz-Primo, M. A., & Furtak, E. M. (2004). Informal formative assessment of students’ understanding of scientific inquiry (CSE No. 639). Los Angeles.Google Scholar
  38. Ruiz-Primo, M. A., & Furtak, E. M. (2007). Exploring teachers’ informal formative assessment practices and students’ understanding in the context of scientific inquiry. Journal of Research in Science Teaching, 44(1), 57–84.CrossRefGoogle Scholar
  39. Santos-Trigo, M. (2014). Problem solving in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 496–501). Dordrecht, Heidelberg, New York, London: Springer.Google Scholar
  40. Sauter, M. (1998). Narration de recherche: Une nouvelle pratique pédagogique. Repères IREM, 30, 9–21.Google Scholar
  41. Scriven, M. (1967). The methodology of evaluation. In R. Mills Gagné, R. W. Tyler, & M. Scriven (Eds.), Perspectives of curriculum evaluation (pp. 39–83). Chicago: Rand Mc Nally.Google Scholar
  42. Shavelson, R. J., Young, D. B., Ayala, C. C., Brandon, P. R., Furtak, E. M., Ruiz-Primo, M. A., … Yin, Y. (2008). On the impact of curriculum-embedded formative assessment on learning: A collaboration between curriculum and assessment developers. Applied Measurement in Education, 21(4), 295–314.CrossRefGoogle Scholar
  43. Weil-Barais, A. (1993). L’Homme cognitif. Paris: PUF.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of GenevaGenevaSwitzerland

Personalised recommendations