How to Stimulate In-Service Teachers’ Didactic Analysis Competence by Means of Problem Posing

  • Uldarico MalaspinaEmail author
  • Carlos Torres
  • Norma Rubio
Part of the ICME-13 Monographs book series (ICME13Mo)


Problem posing has long been recognized as a critically important intellectual activity in scientific investigation (Cai, Hwang, Jiang, & Silber, 2015). There are empirical studies that use problem posing activities to improve the teachers’ mathematical practices. Therefore, our study focuses in the didactic analysis competence. Our central research question is: How can we use problem-posing activities to stimulate the development of teachers’ didactic analysis competence? We analyze a problem posed by in-service teachers taking as start point a problem related to affine function. Our findings give us evidences to claim in-service teachers show difficulties to pose problems with didactical considerations. Therefore, we propose to stimulate teachers’ didactic analysis competence by means of an instructional process using a problem posing strategy that involves a didactic reflection phase on the mathematical practices carried out and the route to actually implement it in teaching practice.


Problem posing Problem solving Didactic analysis Onto-semiotic approach In-service teachers Training teachers 



This work has been developed as part of the Research Projects on teacher training EDU2015-64646-P (MINECO/FEDER, UE) and IREM-PUCP 0390 (Peru). We give special thanks to Dr. Vicenç Font for his support as an expert in OSA.


  1. Badillo, E., Font, V., & Edo, M. (2015). Analyzing the responses of 7–8 year olds when solving partitioning problems. International Journal of Science and Mathematics Education 13, 811–836.CrossRefGoogle Scholar
  2. Breda, A., Pino-Fan, L., & Font, V. (2017). Meta didactic-mathematical knowledge of teachers: criteria for the reflection and assessment on teaching practice. Eurasia Journal of Mathemat-ics, Science & Technology Education, 13(6), 1893–1918. Scholar
  3. Cai, J., Hwang, S., Jiang, C., & Silber, S. (2015). Problem-posing research in mathematics education: Some answered and unanswered questions. In F. M. Singer, N. F. Ellerton, & J. Cai (Eds.), Mathematical problem posing: From research to effective practice (pp. 141–174). New York, NY: Springer.Google Scholar
  4. Felmer, P. L., Pehkonen, E., & Kilpatrick, J. (Eds.). (2016). Posing and solving mathematical problems. Springer International Publishing.Google Scholar
  5. Font, V., Planas, N., & Godino, J. D. (2010). Modelo para el análisis didáctico en educación matemática [A model for the study of mathematics teaching and learning processes]. Infancia y Aprendizaje, 33(1), 89–105.CrossRefGoogle Scholar
  6. Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM. The International Journal on Mathematics Education, 39(1–2), 127–135.CrossRefGoogle Scholar
  7. Godino, J. D., Giacomone, B., Batanero, C., & Font, V. (2017). Enfoque Ontosemiótico de los Conocimientos y Competencias del Profesor de Matemáticas. [Onto-Semiotic Approach to Mathematics Teacher’s Knowledge and Competences]. Bolema: Boletim de Educação Matemática, 31(57), 90–113. Scholar
  8. Kontorovich, I, & Koichu, B. (2009). Towards a comprehensive framework of mathematical problem posing. In M. Hoines & A. Flugestad (Eds.), Proceedings of the 33rd Conference International Group for the Psychology of Mathematics Education (Vol. 3, pp. 401–408). Thessaloniki, Greece: PME.Google Scholar
  9. Liljedahl, P., Santos-Trigo, M., Malaspina, U., & Bruder, R. (2016). Problem solving in mathematics education. ICME-13 topical surveys. Berlin: Springer International Publishing.CrossRefGoogle Scholar
  10. Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Beverly Hills: Sage.CrossRefGoogle Scholar
  11. Malaspina, U. (2015). Creación de problemas: sus potencialidades en la enseñanza y aprendizaje de las matemáticas [Problem posing: its potentials in mathematics teaching and learning]. In Conference given at IACME XIV. Tuxtla Gutiérrez, Chiapas, Mexico: IACME. Retrieved from:
  12. Malaspina, U., & Font, V. (2010). The role of intuition in the solving of optimization problems. Educational Studies in Mathematics, 75, 107–130.CrossRefGoogle Scholar
  13. Malaspina, U., Mallart, A., & Font, V. (2015). Development of teachers’ mathematical and didactic competencies by means of problem posing. In K. Krainer & N. Vondrová (Eds.), Proceedings of the Ninth Congress of the European Society for Research in Mathematics Education (CERME 9) (pp. 2861–2866). Prague, Czech Republic: ERME.Google Scholar
  14. Malaspina, U., Torres, C., & Rubio, N. (In press). How to Stimulate In-Service Teachers’ Didactic Analysis Competence by Means of Problem Posing. In Liljedahl, P. & L. Santos-Trigo (Eds.), Mathematical Problem Solving, Chapter 7. Berlin, Germany: Springer.Google Scholar
  15. Mallart, A., Font, V., & Malaspina, U. (2016). Reflexión sobre el significado de qué es buen problema en la formación inicial de maestros [Reflection on what is a good problem in the initial training of mathematics primary teachers]. Perfiles Educativos, XXXVIII, 152, 14–30.Google Scholar
  16. Milinkovié, J. (2015). Conceptualizing problem posing via transformation. In F. Singer, N. Ellerton, & J. Cai (Eds.), Mathematical problem posing (pp. 47–70). New York: Springer.Google Scholar
  17. Ponte, J. P. (2006). Estudos de caso em educação matemática [Case studies in mathematics education]. Bolema, 19(25), 105–132.Google Scholar
  18. Rubio, N. (2012). Competencia del profesorado en el análisis didáctico de prácticas, objetos y procesos matemáticos [Teacher competence in the didactic analysis of mathematical practices, objects and processes] (Unpublished doctoral dissertation). University of Barcelona, Spain.Google Scholar
  19. Singer, F. M., Ellerton, N. F., & Cai, J. (Eds.). (2015). Mathematical problem posing: From research to effective practice. New York: Springer.Google Scholar
  20. Stahnke, R., Schueler, S., & Roesken-Winter, B. (2016). Teachers’ perception, interpretation, and decision-making: a systematic review of empirical mathematics education research. ZDM. The International Journal on Mathematics Education, 48(1), 1–27.CrossRefGoogle Scholar
  21. Tardif, J. (2006). L’évaluation des compétences. Documenter le parcours de développement. Montréal: Chenelière Éducation.Google Scholar
  22. Tichá, M., & Hošpesová, A. (2013). Developing teachers’ subject didactic competence through problem posing. Educational Studies in Mathematics, 83(1), 133–143.CrossRefGoogle Scholar
  23. Torres, C., & Malaspina, U. (2018). Improving in-service teachers’ problem posing skill by means of didactic reflection. In E. Berqvist, M. Österholm, C. Granberg, & L. Sumpter (Eds.), Proceedings of the 42nd Conference International Group for the Psychology of Mathematics Education (Vol. 5, p. 176). Umeå, Sweden: PME.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Uldarico Malaspina
    • 1
    Email author
  • Carlos Torres
    • 1
  • Norma Rubio
    • 1
  1. 1.Pontificia Universidad Católica del PerúLimaPeru

Personalised recommendations