Advertisement

The ARPA Experience in Chile: Problem Solving for Teachers’ Professional Development

  • Patricio FelmerEmail author
  • Josefa Perdomo-Díaz
  • Cristián Reyes
Chapter
Part of the ICME-13 Monographs book series (ICME13Mo)

Abstract

In this chapter, we present the ARPA Initiative, a research and development program having as a main goal the introduction of problem solving into regular teachers’ practice as a way of enriching mathematics classrooms, moving the attention from teacher to students and opening the route for developing abilities intertwined with content rather than content alone. Starting with the educational context in Chile, we describe the origin of the ARPA Initiative and then its professional development program with its different workshops: PSAction, (We use PS in front of our workshops’ names for emphasizing the role of Problem Solving in them.) PSContent, PSMonitor and, with special emphasis, PSClassroom, the core of the initiative. The experiences and research taking part along three years are then described, to conclude with learnings from practice and the main challenges for the future.

Notes

Acknowledgements

Funding from Fondef ID14I10338, PIA-CONICYT Basal Funds for Centers of Excellence Project FB0003, Basal CMM Projects, University of O’Higgins and Project EDU2015-65270-R are gratefully acknowledged. The authors are thankful to Lisa Darragh for useful comments on the chapter content and form and to Peter Liljedahl for many inspiring conversations, in particular the one in which we visualized the changes proposed in Sect. 14.7.

The authors want to thank the editors for granting us the opportunity of publishing this chapter, the referees for various interesting suggestions and for pointing out some English improvements.

References

  1. Alfaro, L., & Gormaz, R. (2009). Análisis comparativo de los resultados chilenos en las pruebas de Matemática SIMCE y PISA. In ¿Qué nos dice PISA sobre la educación de los jóvenes en Chile? Nuevos análisis y perspectivas sobre los resultados en PISA 2006 (pp. 239–260). Chile: Unidad de Currículo y Evaluación del Ministerio de Educación.Google Scholar
  2. Araya, R., & Dartnell, P. (2009). Saber pedagógico y conocimiento de la disciplina matemática en profesores de Educación General Básica. In Selección de Investigaciones Primer Concurso FONIDE: Evidencias para Políticas Públicas en Educación (pp. 155–198). Santiago, Chile: Ministry of Education.Google Scholar
  3. Balboa, R. (2015) Diagnóstico de la habilidad de resolución de problemas en estudiantes de educación básica a partir del análisis de sus producciones escritas. Tesis de Magister en Educación, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile.Google Scholar
  4. Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching. What makes it special? Journal of Teacher Education, 59(5), 389–407.CrossRefGoogle Scholar
  5. Borko, H. (2004). Professional development and teacher learning: Mapping the terrain. Educational Researcher, 33(8), 3–15.CrossRefGoogle Scholar
  6. Cerda, G., Pérez, C., Giaconi, V., Perdomo-Díaz, J., Reyes, C., & Felmer, P. (2017). The effect of a professional development program workshop about problem solving on mathematics teachers’ ideas about the nature of mathematics, achievements in mathematics, and learning in mathematics. Psychology, Society, & Education, 9(1), 11–26.CrossRefGoogle Scholar
  7. Darragh, L., Espinoza, C., & Peri, A. (n.d.). An old wheel: Using TRUmath in the Chilean Context (submitted).Google Scholar
  8. Desimone, L., Porter, A. C., Garet, M. S., Yoon, S., & Birman, B. F. (2002). Effects of Professional development on teacher’s instruction: Results from a three-year longitudinal study. Educational Evaluation and Policy Analysis, 24(2), 81–112.CrossRefGoogle Scholar
  9. Espinoza, C. G., Darragh, L., & Peri, A. (2016). Oportunidades para mejorar la calidad de las clases en matemáticas. In XX Jornadas Nacionales de Educación Matemática (pp. 355–359). Valparaíso, Chile.Google Scholar
  10. Felmer, P., & Perdomo-Díaz, J. (2016). Novice Chilean secondary mathematics teachers as problem solvers. In P. Felmer, E. Pehkonen, & J. Kilpatrick, (Eds.), Posing and solving mathematical problems: Advances and new perspectives. Research in Mathematics Education Series (pp. 287–308). Springer.Google Scholar
  11. Felmer, P., & Perdomo-Díaz, J. (2017). Un programa de desarrollo profesional docente para el nuevo currículo de matemática: la resolución de problemas como eje articulador. Educación Matemática, Vol. 29, Núm. 1, abril, 201–217.Google Scholar
  12. Felmer, P., Perdomo-Díaz, J., Cisternas, T., Randolph, V., Medel, L., & Cea, F. (2015). La resolución de problemas en la matemática escolar y en la formación inicial docente. Estudios de Política Educativa, 1(1), 64–105.Google Scholar
  13. Fondef ID14I10338. (2015). Estrategias de Desarrollo Profesional: Profesores de Enseñanza Básica, Habilidades Matemáticas y Clases de Matemática. [Professional development strategies: elementary teachers, mathematical abilities and mathematics lessons]. Chile: Conicyt.Google Scholar
  14. Garet, M. S., Porter, A. C., Desimone, L., Birman, B. F., & Suk Yoon, K. (2001). What makes professional development effective? Results from a national sample of teachers. American Educational Research Journal, 38(4), 915–945.CrossRefGoogle Scholar
  15. Giaconi, V., Perdomo-Díaz, J., Cerda, G., & Saadati, F. (n.d.). Autoeficacia, valoración y prácticas pedagógicas de los profesores en relación con la resolución de problemas en matemáticas: diseño y validación de un cuestionario. Enseñanza de las Ciencias (to appear).Google Scholar
  16. Handal, B. (2003). Teachers’ mathematical beliefs: A review. The Mathematics Educator, 13(2), 47–57.Google Scholar
  17. Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2009). Adding it up: Helping children learn mathematics (7th ed.). Washington, DC: National Academy Press.Google Scholar
  18. Marrongelle, K., Sztajn, P., & Smith, M. (2013). Scaling up professional development in an era of common state standards. Journal of Teacher Education, 64(3), 202–211.CrossRefGoogle Scholar
  19. Martin, D. B. (2013). Race, racial projects, and mathematics education. Journal for Research in Mathematics Education, 44(1), 316–333.CrossRefGoogle Scholar
  20. Ministry of Education. (2012). Bases Curriculares, 1º a 6º básico. [Downloaded from http://www.mineduc.cl/index5.php?id_portal=47 in May 3, 2015].
  21. Ministry of Education. (2013). Resultados TIMSS 2011-Chile. Santiago, Chile: Agencia de Calidad de la Educación.Google Scholar
  22. Ministry of Education. (2016). PISA 2015. Santiago, Chile: Agencia de la Calidad de la Educación.Google Scholar
  23. Nasir, N. (2002). Identity, goals, and learning. Mathematics in cultural practice. Mathematical Thinking and Learning, 4, 213–247.CrossRefGoogle Scholar
  24. NCTM, National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: NCTM.Google Scholar
  25. Niss, M. (2002). Mathematical competencies and the learning of mathematics: The Danish KOM project. [http://w3.msi.vxu.se/users/hso/aaa_niss.pdf].
  26. OECD (2015) Chile: Policy priorities for stronger and more equitable growth. OECD Series. Better Policies.Google Scholar
  27. Perdomo-Díaz, J. & Felmer, P. (2017). El Taller RPAula: Activando la Resolución de Problemas en las Aulas. Profesorado. Revista de curriculum y formación del profesorado. Número Extraordinario, Julio, 425–444.Google Scholar
  28. Perdomo-Díaz, J., Felmer, P., Randolph, V., & González, G. (2017). Problem solving as a professional development strategy for teachers: A case study with fractions. EURASIA Journal of Mathematics, Science and Technology Education, 13(3), 987–999.CrossRefGoogle Scholar
  29. Peri, A., Darragh, L., & Espinoza, C. G. (2016). Questions and quality of classroom instruction of math after a professional development. In 13th International Congress on Mathematical Education, Hamburg, Germany.Google Scholar
  30. Pólya, G. (1945). How to solve it. Cambridge: Princeton University Press.Google Scholar
  31. Pólya, G. (1966). On teaching problem solving. In The Role of Axiomatics and Problem Solving in Mathematics, Conference Board of Mathematical Sciences (pp. 123–129), Ginn, Boston.Google Scholar
  32. Preiss, D., Larraín, A., & Valenzuela, S. (2011). Discurso y Pensamiento en el Aula Matemática Chilena. Psykhe, 20(2), 131–146.CrossRefGoogle Scholar
  33. Radovic, D., & Preiss, D. (2010). Discourse patterns observed in middle-school level mathematics classes in Chile. Psykhe, 19, 65–79.CrossRefGoogle Scholar
  34. Rodríguez, B., Carreño, X., Ochsenius, M., & Muñoz, C. (2015). ¿Qué saben de matemáticas los docentes chilenos que la enseñan? Evidencia de los sistemas de evaluación docente en Chile. In Segundo Congreso Latinoamericano de Medición y Evaluación Educacional, México.Google Scholar
  35. Saadati, F., Cerda, G., Giaconi, V., Reyes, C., & Felmer, P. (n.d.). Modeling Chilean mathematics teachers’ instructional beliefs on problem solving practices. International Journal of Science and Mathematics Education (to appear).Google Scholar
  36. Schoenfeld, A. (2013). Classroom observations in theory and practice. ZDM Mathematics Education, 45, 607–621.CrossRefGoogle Scholar
  37. Smith, M. S., & Stein, M. K. (2014). 5 practices for orchestrating productive mathematics discussions. USA: NCTM.Google Scholar
  38. Sotomayor, C., & Walker, H. (2009). Políticas de formación continua docente en Chile. Panorama y propuestas. In Sotomayor & Walker (Eds.), Formación continua de profesores (pp. 35–62) Santiago, Chile: Editorial Universitaria.Google Scholar
  39. Sullivan, P., & Wood, T. (Eds.) (2008). International handbook of mathematics teacher education, vol. 1: Knowledge and beliefs in mathematics teaching and teaching development. Rotterdam/Taipei: Sense Publisher.Google Scholar
  40. Tatto, M. T., Rodríguez, M., Ingvarson, L., Rowley, G., Maeda, Y., & Byun, S. Y. (2013). Development of the TEDS-M Survey questionnaires. In M.T. Tatto (Ed.), The teacher education and development study in mathematics (TEDS-M) policy, practice, and readiness to teach primary and secondary mathematics in 17 countries (pp. 47–70), Technical report. The Netherlands: IEA.Google Scholar
  41. Thompson, A. (1992). Teachers’ beliefs and conceptions: A synthesis of the research. In A. D. Grouws (Ed.), Handbook of research on mathematics learning and teaching (pp. 127–146). New York: MacMillan.Google Scholar
  42. Varas, L., Felmer, P., Gálvez, G., Lewin, R., Martínez, C., Navarro, S., et al. (2008). Oportunidades de Preparación para Enseñar Matemática de Futuros Profesores de Educación General Básica en Chile. Calidad en la Educación, Consejo Superior de Superior de Educación, 29, 64–88.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Patricio Felmer
    • 1
    Email author
  • Josefa Perdomo-Díaz
    • 1
  • Cristián Reyes
    • 1
  1. 1.SantiagoChile

Personalised recommendations