Using Multisensory Integration to Understand the Human Auditory Cortex

  • Michael S. BeauchampEmail author
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 68)


Accurate and meaningful parcellation of the human cortex is an essential endeavor to facilitate the collective understanding of brain functions across sensory and cognitive domains. Unlike in the visual cortex, the details of anatomical and functional mapping associated with the earliest stages of auditory processing in the cortex are still a topic of active debate. Interestingly, aspects of multisensory processing may provide a unique window to meaningfully subdivide the auditory sensory areas by exploring different functional properties other than the traditional tonotopic approach. In this chapter, a tour of the auditory cortical areas is first provided, starting from its core area, Heschl’s gyrus, then moving onto surrounding areas. Evidence from different sources, including postmortem studies of the human auditory cortex, resting-state functional connectivity derived from the Human Connectome Project, and electrocorticographic studies, is presented to better understand how different subdivisions of the human auditory cortex and its surrounding areas are involved in auditory and multisensory processing. The chapter concludes with the remaining challenges to account for individual variability in functional anatomy, particularly pertaining to multisensory processing.


Auditory cortex Cross-modal Electrocorticography Functional anatomy Functional connectivity Heschl’s gyrus Human Connectome Project Sensory integration Superior temporal sulcus Temporal cortex 


  1. Beauchamp, M. S. (2005). Statistical criteria in FMRI studies of multisensory integration. Neuroinformatics, 3(2), 93–113.CrossRefGoogle Scholar
  2. Beauchamp, M. S., Lee, K. E., Argall, B. D., & Martin, A. (2004a). Integration of auditory and visual information about objects in superior temporal sulcus. Neuron, 41(5), 809–823.CrossRefGoogle Scholar
  3. Beauchamp, M. S., Argall, B. D., Bodurka, J., Duyn, J. H., & Martin, A. (2004b). Unraveling multisensory integration: Patchy organization within human STS multisensory cortex. Nature Neuroscience, 7(11), 1190–1192.CrossRefGoogle Scholar
  4. Beauchamp, M. S., Yasar, N. E., Kishan, N., & Ro, T. (2007). Human MST but not MT responds to tactile stimulation. The Journal of Neuroscience, 27(31), 8261–8267.CrossRefGoogle Scholar
  5. Brodmann, K. (1994). Vergleichende Lokalisationslehre der Grosshirnrinde [Brodmann’s Localization in the Cerebral Cortex] (L. J. Garey, Trans.) Leipzig: Barth. London: Smith Gordon (Original work published in 1909).Google Scholar
  6. Bruce, C., Desimone, R., & Gross, C. G. (1981). Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. Journal of Neurophysiology, 46(2), 369–384.CrossRefGoogle Scholar
  7. Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F., & Fox, P. T. (2012). Activation likelihood estimation meta-analysis revisited. NeuroImage, 59(3), 2349–2361.CrossRefGoogle Scholar
  8. Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1(1), 1–47.CrossRefGoogle Scholar
  9. Ghazanfar, A. A., & Schroeder, C. E. (2006). Is neocortex essentially multisensory? Trends in Cognitive Sciences, 10(6), 278–285.CrossRefGoogle Scholar
  10. Glasser, M. F., & Van Essen, D. C. (2011). Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. The Journal of Neuroscience, 31(32), 11597–11616.CrossRefGoogle Scholar
  11. Glasser, M. F., Goyal, M. S., Preuss, T. M., Raichle, M. E., & Van Essen, D. C. (2014). Trends and properties of human cerebral cortex: Correlations with cortical myelin content. NeuroImage, 93, 165–175.CrossRefGoogle Scholar
  12. Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2016). A multi-modal parcellation of human cerebral cortex. Nature, 536(7), 171–178.CrossRefGoogle Scholar
  13. Gonzalez-Castillo, J., Saad, Z. S., Handwerker, D. A., Inati, S. J., Brenowitz, N., & Bandettini, P. A. (2012). Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis. Proceedings of the National Academy of Sciences of the United States of America, 109(14), 5487–5492.CrossRefGoogle Scholar
  14. Grefkes, C., & Fink, G. R. (2005). The functional organization of the intraparietal sulcus in humans and monkeys. Journal of Anatomy, 207(1), 3–17.CrossRefGoogle Scholar
  15. Hagen, M. C., Franzen, O., McGlone, F., Essick, G., Dancer, C., & Pardo, J. V. (2002). Tactile motion activates the human middle temporal/V5 (MT/V5) complex. European Journal of Neuroscience, 16(5), 957–964.CrossRefGoogle Scholar
  16. Huk, A. C., Dougherty, R. F., & Heeger, D. J. (2002). Retinotopy and functional subdivision of human areas MT and MST. The Journal of Neuroscience, 22(16), 7195–7205.CrossRefGoogle Scholar
  17. Jiang, F., Beauchamp, M. S., & Fine, I. (2015). Re-examining overlap between tactile and visual motion responses within hMT+ and STS. NeuroImage, 119, 187–196.CrossRefGoogle Scholar
  18. Jiang, F., Stecker, G. C., Boynton, G. M., & Fine, I. (2016). Early blindness results in developmental plasticity for auditory motion processing within auditory and occipital cortex. Frontiers in Human Neuroscience, 10, 324.PubMedPubMedCentralGoogle Scholar
  19. Kaas, J. H., Hackett, T. A., & Tramo, M. J. (1999). Auditory processing in primate cerebral cortex. Current Opinion in Neurobiology, 9(2), 164–170.CrossRefGoogle Scholar
  20. Matteau, I., Kupers, R., Ricciardi, E., Pietrini, P., & Ptito, M. (2010). Beyond visual, aural and haptic movement perception: hMT+ is activated by electrotactile motion stimulation of the tongue in sighted and in congenitally blind individuals. Brain Research Bulletin, 82(5–6), 264–270.CrossRefGoogle Scholar
  21. Moerel, M., De Martino, F., & Formisano, E. (2014). An anatomical and functional topography of human auditory cortical areas. Frontiers in Neuroscience, 8, 225.CrossRefGoogle Scholar
  22. Morosan, P., Schleicher, A., Amunts, K., & Zilles, K. (2005). Multimodal architectonic mapping of human superior temporal gyrus. Anatomy and Embryology, 210(5–6), 401–406.CrossRefGoogle Scholar
  23. Ozker, M., Schepers, I. M., Magnotti, J. F., Yoshor, D., & Beauchamp, M. S. (2017). A double dissociation between anterior and posterior superior temporal gyrus for processing audiovisual speech demonstrated by electrocorticography. Journal of Cognitive Neuroscience, 29(6), 1044–1060.CrossRefGoogle Scholar
  24. Pascual-Leone, A., & Hamilton, R. (2001). The metamodal organization of the brain. Progress in Brain Research, 134, 427–445.CrossRefGoogle Scholar
  25. Ricciardi, E., Vanello, N., Sani, L., Gentili, C., Scilingo, E. P., Landini, L., Guazzelli, M., Bicchi, A., Haxby, J. V., & Pietrini, P. (2007). The effect of visual experience on the development of functional architecture in hMT+. Cerebral Cortex, 17(12), 2933–2939.CrossRefGoogle Scholar
  26. Saenz, M., Lewis, L. B., Huth, A. G., Fine, I., & Koch, C. (2008). Visual motion area MT+/V5 responds to auditory motion in human sight-recovery subjects. The Journal of Neuroscience, 28(20), 5141–5148.CrossRefGoogle Scholar
  27. Snyder, L. H., Batista, A. P., & Andersen, R. A. (1997). Coding of intention in the posterior parietal cortex. Nature, 386(6621), 167–170.CrossRefGoogle Scholar
  28. Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. Cambridge, MA: The MIT Press.Google Scholar
  29. Summers, I. R., Francis, S. T., Bowtell, R. W., McGlone, F. P., & Clemence, M. (2009). A functional-magnetic-resonance-imaging investigation of cortical activation from moving vibrotactile stimuli on the fingertip. The Journal of the Acoustical Society of America, 125(2), 1033–1039.CrossRefGoogle Scholar
  30. Takahashi, K., Gu, Y., May, P. J., Newlands, S. D., Deangelis, G. C., & Angelaki, D. E. (2007). Multimodal coding of three-dimensional rotation and translation in area MSTd: Comparison of visual and vestibular selectivity. The Journal of Neuroscience, 27(36), 9742–9756.CrossRefGoogle Scholar
  31. Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E. J., Yacoub, E., Ugurbil, K., & Wu-Minn HCP Consortium. (2013). The WU-Minn Human Connectome Project: An overview. NeuroImage, 80, 62–79.CrossRefGoogle Scholar
  32. van Kemenade, B. M., Seymour, K., Wacker, E., Spitzer, B., Blankenburg, F., & Sterzer, P. (2014). Tactile and visual motion direction processing in hMT+/V5. NeuroImage, 84, 420–427.CrossRefGoogle Scholar
  33. Wallace, M. T., Ramachandran, R., & Stein, B. E. (2004). A revised view of sensory cortical parcellation. Proceedings of the National Academy of Sciences of the United States of America, 101(7), 2167–2172.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Neurosurgery and Core for Advanced MRIBaylor College of MedicineHoustonUSA

Personalised recommendations