Advertisement

The Earth Gravity Field: Basics

  • Fernando SansòEmail author
  • Mirko Reguzzoni
  • Riccardo Barzaghi
Chapter
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)

Abstract

In this chapter we try to outline the main concepts used to estimate and describe the gravity field. The aim is to show the interplay between the geometry of the field, represented in terms of equipotential surfaces and plumb lines, and the mathematical relations that connect observable gravity values to the gravity potential. This is especially done in a linearized form, after a normal potential is defined, based on the ellipsoidal geometry, and used as reference function in the subsequent linearization.

References

  1. Abramowitz M., Stegun I.A. (1964). Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, New York.Google Scholar
  2. Bur\(\breve{{\rm s}}\)a M., Kenyon S., Kouba J., \(\breve{{\rm S}}\)íma Z., Vatrt V., Vítek V., Vojtí\(\breve{{\rm s}}\)ková M. (2007). The geopotential value \(W_0\) for specifying the relativistic atomic time scale and a global vertical reference system. Journal of Geodesy, 81(2):103–110.Google Scholar
  3. Grafarend E.W., Ardalan A.A. (1999). World Geodetic Datum 2000. Journal of Geodesy, 73(11):611–623.CrossRefGoogle Scholar
  4. Heiskanen W.A. and Moritz H. (1967). Physical geodesy. Freeman, San Francisco.CrossRefGoogle Scholar
  5. Hotine M. (1969). Mathematical geodesy. ESSA Monograph 2, U.S. Department of Commerce, Washington, DC.Google Scholar
  6. Martinec Z. (1998). Boundary value problems for gravimetric determination of a precise geoid. LNES-Springer, Berlin.Google Scholar
  7. Marussi A. (1985). Intrinsic geodesy. Springer, Berlin.CrossRefGoogle Scholar
  8. Moritz H. (1980). Geodetic Reference System 1980. Bulletin Gèodèsique, 62(3), 348–358.CrossRefGoogle Scholar
  9. Pizzetti P. (1894). Sulla espressione della gravità alla superficie del geoide, supposto ellissoidico. Atti della Reale Accademia dei Lincei, Rendiconti 3:166–172 (in Italian).Google Scholar
  10. Sansò F., Sideris M.G. (2013). Geoid determination: Theory and methods. Lecture Notes in Earth System Sciences, Vol. 110. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  11. Somigliana C. (1929). Teoria generale del campo gravitazionale dellellissoide di rotazione. Memorie della Società Astronomia Italiana 4:541–599 (in Italian).Google Scholar
  12. Somigliana C. (1930). Sul campo gravitazionale esterno del geoide ellissoidico. Atti della Reale Accademia dei Lincei, Rendiconti, 6:237–243 (in Italian).Google Scholar
  13. Vanìcek P. and Krakiwsky E.J. (1986). Geodesy: The concepts, 2nd edn. Elsevier, Amsterdam.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fernando Sansò
    • 1
    Email author
  • Mirko Reguzzoni
    • 1
  • Riccardo Barzaghi
    • 1
  1. 1.Department of Civil and Environmental Engineering (DICA)Politecnico di MilanoMilanItaly

Personalised recommendations