Advertisement

Diabetes, Prediabetes, and Metabolic Syndrome Among People Living with HIV

  • Sowmya Chandra Reddy
  • William Bealle Moore
  • Papita Martina Rozario
  • Amy H. WarrinerEmail author
Chapter

Abstract

With HIV now a chronic disease, other chronic diseases associated with aging are on the rise in people living with HIV (PLWH), including diabetes mellitus (DM). DM in PLWH is associated with traditional risk factors, like age, sex, race, and BMI, and the additional interplay of HIV and antiretroviral therapy. The incidence of DM in PLWH is higher than that of the general population making regular screening for DM in PLWH necessary. However, the means of screening for DM in the general population using hemoglobin A1c may not adequately identify DM or prediabetes in PLWH, leaving traditional glucose monitoring as the best means of screening for altered glucose metabolism. The effective management of DM among this specific population needs a thorough understanding of pathophysiology and pharmacotherapy. Current strategies to decrease cardio-metabolic risks in PLWH mirror those in the general population, with main focus on treatment of modifiable risk factors. Decisions regarding the choice of medications for DM should be individualized, taking into account other comorbidities. Newer medications show promise for benefit outside of glucose control, but studies in PLWH specifically are not available. A multidisciplinary approach would be beneficial for the evaluation and management of DM, prediabetes, and metabolic syndrome in this subset of population.

Keywords

Diabetes Prediabetes Metabolic syndrome HIV Lipodystrophy 

References

  1. 1.
    Centers for Disease Control and Prevention. HIV surveillance report, 2014; vol. 26. http://www.cdc.gov/hiv/library/reports/surveillance/. Published November 2015. Accessed [Dec 15, 2016].
  2. 2.
    Centers for Disease Control and Prevention. National diabetes statistics report: estimates of diabetes and its burden in the United States, 2014. Atlanta: U.S. Department of Health and Human Services; 2014.Google Scholar
  3. 3.
    Brown TT, Cole SR, Li X, Kingsley LA, Palella FJ, Riddler SA, et al. Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch Intern Med. 2005;165(10):1179–84.PubMedCrossRefGoogle Scholar
  4. 4.
    Justman JE, Benning L, Danoff A, Minkoff H, Levine A, Greenblatt RM, et al. Protease inhibitor use and the incidence of diabetes mellitus in a large cohort of HIV-infected women. J Acquir Immune Defic Syndr. 2003;32(3):298–302.PubMedCrossRefGoogle Scholar
  5. 5.
    Tien PC, Schneider MF, Cole SR, Levine AM, Cohen M, DeHovitz J, et al. Antiretroviral therapy exposure and incidence of diabetes mellitus in the Women’s interagency HIV study. AIDS. 2007;21(13):1739–45.PubMedCrossRefGoogle Scholar
  6. 6.
    Butt AA, McGinnis K, Rodriguez-Barradas MC, Crystal S, Simberkoff M, Goetz MB, et al. HIV infection and the risk of diabetes mellitus. AIDS. 2009;23(10):1227–34.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Moyle GJ, Sabin CA, Cartledge J, Johnson M, Wilkins E, Churchill D, et al. A randomized comparative trial of tenofovir DF or abacavir as replacement for a thymidine analogue in persons with lipoatrophy. AIDS. 2006;20(16):2043–50.PubMedCrossRefGoogle Scholar
  8. 8.
    Aberg JA, Gallant JE, Ghanem KG, Emmanuel P, Zingman BS, Horberg MA, et al. Primary care guidelines for the management of persons infected with HIV: 2013 update by the HIV medicine association of the Infectious Diseases Society of America. Clin Infect Dis. 2014;58(1):e1–34.PubMedCrossRefGoogle Scholar
  9. 9.
    Diop ME, Bastard JP, Meunier N, Thevenet S, Maachi M, Capeau J, et al. Inappropriately low glycated hemoglobin values and hemolysis in HIV-infected patients. AIDS Res Hum Retrovir. 2006;22(12):1242–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Kim PS, Woods C, Georgoff P, Crum D, Rosenberg A, Smith M, et al. A1C underestimates glycemia in HIV infection. Diabetes Care. 2009;32(9):1591–3.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    De Wit S, Sabin CA, Weber R, Worm SW, Reiss P, Cazanave C, et al. Incidence and risk factors for new-onset diabetes in HIV-infected patients: the data collection on adverse events of anti-HIV drugs (D:A:D) study. Diabetes Care. 2008;31(6):1224–9.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Ledergerber B, Furrer H, Rickenbach M, Lehmann R, Elzi L, Hirschel B, et al. Factors associated with the incidence of type 2 diabetes mellitus in HIV-infected participants in the Swiss HIV Cohort study. Clin Infect Dis. 2007;45(1):111–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Capeau J, Bouteloup V, Katlama C, Bastard JP, Guiyedi V, Salmon-Ceron D, et al. Ten-year diabetes incidence in 1046 HIV-infected patients started on a combination antiretroviral treatment. AIDS. 2012;26(3):303–14.PubMedCrossRefGoogle Scholar
  14. 14.
    Rasmussen LD, Mathiesen ER, Kronborg G, Pedersen C, Gerstoft J, Obel N. Risk of diabetes mellitus in persons with and without HIV: a Danish nationwide population-based cohort study. PLoS One. 2012;7(9):e44575.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kalra S, Kalra B, Agrawal N, Unnikrishnan A. Understanding diabetes in patients with HIV/AIDS. Diabetol Metab Syndr. 2011;3(1):2.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    National Cholesterol Education Program Expert Panel on Detection E, Treatment of High Blood Cholesterol in A. Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation. 2002;106(25):3143–421.CrossRefGoogle Scholar
  17. 17.
    Alberti KG, Zimmet P, Shaw J. Metabolic syndrome – a new world-wide definition. A consensus statement from the international diabetes federation. Diabet Med. 2006;23(5):469–80.PubMedCrossRefGoogle Scholar
  18. 18.
    Hasse B, Ledergerber B, Furrer H, Battegay M, Hirschel B, Cavassini M, et al. Morbidity and aging in HIV-infected persons: the Swiss HIV cohort study. Clin Infect Dis. 2011;53(11):1130–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Paik IJ, Kotler DP. The prevalence and pathogenesis of diabetes mellitus in treated HIV-infection. Best Pract Res Clin Endocrinol Metab. 2011;25(3):469–78.PubMedCrossRefGoogle Scholar
  20. 20.
    Koeppe J, Kosmiski L. Apparent resolution of type 2 diabetes mellitus after initiation of potent antiretroviral therapy in a man from Africa with HIV infection. Clin Infect Dis. 2006;42(10):e79–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Press NM, Montaner JS, Bondy G. Resolution of diabetes after initiation of antiretroviral therapy in two human immunodeficiency virus-infected patients. Endocr Pract. 2004;10(3):199–202.PubMedCrossRefGoogle Scholar
  22. 22.
    Zapanti E, Terzidis K, Chrousos G. Dysfunction of the hypothalamic-pituitary-adrenal axis in HIV infection and disease. Hormones (Athens). 2008;7(3):205–16.CrossRefGoogle Scholar
  23. 23.
    Miller KK, Daly PA, Sentochnik D, Doweiko J, Samore M, Basgoz NO, et al. Pseudo-Cushing’s syndrome in human immunodeficiency virus-infected patients. Clin Infect Dis. 1998;27(1):68–72.PubMedCrossRefGoogle Scholar
  24. 24.
    Biglino A, Limone P, Forno B, Pollono A, Cariti G, Molinatti GM, et al. Altered adrenocorticotropin and cortisol response to corticotropin-releasing hormone in HIV-1 infection. Eur J Endocrinol. 1995;133(2):173–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Villette JM, Bourin P, Doinel C, Mansour I, Fiet J, Boudou P, et al. Circadian variations in plasma levels of hypophyseal, adrenocortical and testicular hormones in men infected with human immunodeficiency virus. J Clin Endocrinol Metab. 1990;70(3):572–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Costa A, Nappi RE, Polatti F, Poma A, Grossman AB, Nappi G. Stimulating effect of HIV-1 coat protein gp120 on corticotropin-releasing hormone and arginine vasopressin in the rat hypothalamus: involvement of nitric oxide. Exp Neurol. 2000;166(2):376–84.PubMedCrossRefGoogle Scholar
  27. 27.
    Grunfeld C, Pang M, Doerrler W, Shigenaga JK, Jensen P, Feingold KR. Lipids, lipoproteins, triglyceride clearance, and cytokines in human immunodeficiency virus infection and the acquired immunodeficiency syndrome. J Clin Endocrinol Metab. 1992;74(5):1045–52.PubMedGoogle Scholar
  28. 28.
    Grunfeld C, Kotler DP, Shigenaga JK, Doerrler W, Tierney A, Wang J, et al. Circulating interferon-alpha levels and hypertriglyceridemia in the acquired immunodeficiency syndrome. Am J Med. 1991;90(2):154–62.PubMedCrossRefGoogle Scholar
  29. 29.
    Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: unravelling the mechanism. Lancet. 2010;375(9733):2267–77.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hruz PW. Molecular mechanisms for insulin resistance in treated HIV-infection. Best Pract Res Clin Endocrinol Metab. 2011;25(3):459–68.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Feingold KR, Krauss RM, Pang M, Doerrler W, Jensen P, Grunfeld C. The hypertriglyceridemia of acquired immunodeficiency syndrome is associated with an increased prevalence of low density lipoprotein subclass pattern B. J Clin Endocrinol Metab. 1993;76(6):1423–7.PubMedGoogle Scholar
  32. 32.
    Moucari R, Asselah T, Cazals-Hatem D, Voitot H, Boyer N, Ripault MP, et al. Insulin resistance in chronic hepatitis C: association with genotypes 1 and 4, serum HCV RNA level, and liver fibrosis. Gastroenterology. 2008;134(2):416–23.PubMedCrossRefGoogle Scholar
  33. 33.
    White DL, Ratziu V, El-Serag HB. Hepatitis C infection and risk of diabetes: a systematic review and meta-analysis. J Hepatol. 2008;49(5):831–44.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Takarabe D, Rokukawa Y, Takahashi Y, Goto A, Takaichi M, Okamoto M, et al. Autoimmune diabetes in HIV-infected patients on highly active antiretroviral therapy. J Clin Endocrinol Metab. 2010;95(8):4056–60.PubMedCrossRefGoogle Scholar
  35. 35.
    Zandman-Goddard G, Shoenfeld Y. HIV and autoimmunity. Autoimmun Rev. 2002;1(6):329–37.PubMedCrossRefGoogle Scholar
  36. 36.
    Knysz B, Bolanowski M, Klimczak M, Gladysz A, Zwolinska K. Graves’ disease as an immune reconstitution syndrome in an HIV-1-positive patient commencing effective antiretroviral therapy: case report and literature review. Viral Immunol. 2006;19(1):102–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Jubault V, Penfornis A, Schillo F, Hoen B, Izembart M, Timsit J, et al. Sequential occurrence of thyroid autoantibodies and graves’ disease after immune restoration in severely immunocompromised human immunodeficiency virus-1-infected patients. J Clin Endocrinol Metab. 2000;85(11):4254–7.PubMedGoogle Scholar
  38. 38.
    Tran H, Robinson S, Mikhailenko I, Strickland DK. Modulation of the LDL receptor and LRP levels by HIV protease inhibitors. J Lipid Res. 2003;44(10):1859–69.PubMedCrossRefGoogle Scholar
  39. 39.
    Murata H, Hruz PW, Mueckler M. The mechanism of insulin resistance caused by HIV protease inhibitor therapy. J Biol Chem. 2000;275(27):20251–4.PubMedCrossRefGoogle Scholar
  40. 40.
    Bastard JP, Caron M, Vidal H, Jan V, Auclair M, Vigouroux C, et al. Association between altered expression of adipogenic factor SREBP1 in lipoatrophic adipose tissue from HIV-1-infected patients and abnormal adipocyte differentiation and insulin resistance. Lancet. 2002;359(9311):1026–31.PubMedCrossRefGoogle Scholar
  41. 41.
    Dube MP, Cadden JJ. Lipid metabolism in treated HIV infection. Best Pract Res Clin Endocrinol Metab. 2011;25(3):429–42.PubMedCrossRefGoogle Scholar
  42. 42.
    Hicks CB, Cahn P, Cooper DA, Walmsley SL, Katlama C, Clotet B, et al. Durable efficacy of tipranavir-ritonavir in combination with an optimised background regimen of antiretroviral drugs for treatment-experienced HIV-1-infected patients at 48 weeks in the randomized evaluation of strategic intervention in multi-drug reSistant patients with Tipranavir (RESIST) studies: an analysis of combined data from two randomised open-label trials. Lancet. 2006;368(9534):466–75.PubMedCrossRefGoogle Scholar
  43. 43.
    Eron J Jr, Yeni P, Gathe J Jr, Estrada V, DeJesus E, Staszewski S, et al. The KLEAN study of fosamprenavir-ritonavir versus lopinavir-ritonavir, each in combination with abacavir-lamivudine, for initial treatment of HIV infection over 48 weeks: a randomised non-inferiority trial. Lancet. 2006;368(9534):476–82.PubMedCrossRefGoogle Scholar
  44. 44.
    Fontas E, van Leth F, Sabin CA, Friis-Moller N, Rickenbach M, d’Arminio Monforte A, et al. Lipid profiles in HIV-infected patients receiving combination antiretroviral therapy: are different antiretroviral drugs associated with different lipid profiles? J Infect Dis. 2004;189(6):1056–74.PubMedCrossRefGoogle Scholar
  45. 45.
    Dragsted UB, Gerstoft J, Pedersen C, Peters B, Duran A, Obel N, et al. Randomized trial to evaluate indinavir/ritonavir versus saquinavir/ritonavir in human immunodeficiency virus type 1-infected patients: the MaxCmin1 trial. J Infect Dis. 2003;188(5):635–42.PubMedCrossRefGoogle Scholar
  46. 46.
    Dube MP, Parker RA, Tebas P, Grinspoon SK, Zackin RA, Robbins GK, et al. Glucose metabolism, lipid, and body fat changes in antiretroviral-naive subjects randomized to nelfinavir or efavirenz plus dual nucleosides. AIDS. 2005;19(16):1807–18.PubMedCrossRefGoogle Scholar
  47. 47.
    Dube MP, Shen C, Greenwald M, Mather KJ. No impairment of endothelial function or insulin sensitivity with 4 weeks of the HIV protease inhibitors atazanavir or lopinavir-ritonavir in healthy subjects without HIV infection: a placebo-controlled trial. Clin Infect Dis. 2008;47(4):567–74.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Mills AM, Nelson M, Jayaweera D, Ruxrungtham K, Cassetti I, Girard PM, et al. Once-daily darunavir/ritonavir vs. lopinavir/ritonavir in treatment-naive, HIV-1-infected patients: 96-week analysis. AIDS. 2009;23(13):1679–88.PubMedCrossRefGoogle Scholar
  49. 49.
    Brinkman K, Smeitink JA, Romijn JA, Reiss P. Mitochondrial toxicity induced by nucleoside-analogue reverse-transcriptase inhibitors is a key factor in the pathogenesis of antiretroviral-therapy-related lipodystrophy. Lancet. 1999;354(9184):1112–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Lewis W, Day BJ, Copeland WC. Mitochondrial toxicity of NRTI antiviral drugs: an integrated cellular perspective. Nat Rev Drug Discov. 2003;2(10):812–22.PubMedCrossRefGoogle Scholar
  51. 51.
    Fleischman A, Johnsen S, Systrom DM, Hrovat M, Farrar CT, Frontera W, et al. Effects of a nucleoside reverse transcriptase inhibitor, stavudine, on glucose disposal and mitochondrial function in muscle of healthy adults. Am J Physiol Endocrinol Metab. 2007;292(6):E1666–73.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Carr A, Ritzhaupt A, Zhang W, Zajdenverg R, Workman C, Gatell JM, et al. Effects of boosted tipranavir and lopinavir on body composition, insulin sensitivity and adipocytokines in antiretroviral-naive adults. AIDS. 2008;22(17):2313–21.PubMedCrossRefGoogle Scholar
  53. 53.
    Birkus G, Hitchcock MJ, Cihlar T. Assessment of mitochondrial toxicity in human cells treated with tenofovir: comparison with other nucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother. 2002;46(3):716–23.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Danoff A. Endocrinologic complications of HIV infection. Med Clin North Am. 1996;80(6):1453–69.PubMedCrossRefGoogle Scholar
  55. 55.
    Mann M, Koller E, Murgo A, Malozowski S, Bacsanyi J, Leinung M. Glucocorticoidlike activity of megestrol. A summary of Food and Drug Administration experience and a review of the literature. Arch Intern Med. 1997;157(15):1651–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Passariello N, Giugliano D, Quatraro A, Consoli G, Sgambato S, Torella R, et al. Glucose tolerance and hormonal responses in heroin addicts. A possible role for endogenous opiates in the pathogenesis of non-insulin-dependent diabetes. Metabolism. 1983;32(12):1163–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Reece AS. Manifold implications of forgotten hyperglycemia in clinical opiate dependence. Drug Chem Toxicol. 2013;36(1):55–66.PubMedCrossRefGoogle Scholar
  58. 58.
    Tate T, Willig AL, Willig JH, Raper JL, Moneyham L, Kempf MC, et al. HIV infection and obesity: where did all the wasting go? Antivir Ther. 2012;17(7):1281–9.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Boodram B, Plankey MW, Cox C, Tien PC, Cohen MH, Anastos K, et al. Prevalence and correlates of elevated body mass index among HIV-positive and HIV-negative women in the Women’s interagency HIV study. AIDS Patient Care STDs. 2009;23(12):1009–16.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Amorosa V, Synnestvedt M, Gross R, Friedman H, MacGregor RR, Gudonis D, et al. A tale of 2 epidemics: the intersection between obesity and HIV infection in Philadelphia. J Acquir Immune Defic Syndr. 2005;39(5):557–61.PubMedGoogle Scholar
  61. 61.
    Jones CY, Hogan JW, Snyder B, Klein RS, Rompalo A, Schuman P, et al. Overweight and human immunodeficiency virus (HIV) progression in women: associations HIV disease progression and changes in body mass index in women in the HIV epidemiology research study cohort. Clin Infect Dis. 2003;37(Suppl 2):S69–80.PubMedCrossRefGoogle Scholar
  62. 62.
    Malvy E, Thiebaut R, Marimoutou C, Dabis F, Groupe d’Epidemiologie Clinique du Sida en A. Weight loss and body mass index as predictors of HIV disease progression to AIDS in adults. Aquitaine cohort, France, 1985–1997. J Am Coll Nutr. 2001;20(6):609–15.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Shor-Posner G, Campa A, Zhang G, Persaud N, Miguez-Burbano MJ, Quesada J, et al. When obesity is desirable: a longitudinal study of the Miami HIV-1-infected drug abusers (MIDAS) cohort. J Acquir Immune Defic Syndr. 2000;23(1):81–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Engelson ES, Agin D, Kenya S, Werber-Zion G, Luty B, Albu JB, et al. Body composition and metabolic effects of a diet and exercise weight loss regimen on obese, HIV-infected women. Metabolism. 2006;55(10):1327–36.PubMedCrossRefGoogle Scholar
  65. 65.
    Aberg JA. Cardiovascular complications in HIV management: past, present, and future. J Acquir Immune Defic Syndr. 2009;50(1):54–64.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Nathan DM, Davidson MB, DeFronzo RA, Heine RJ, Henry RR, Pratley R, et al. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care. 2007;30(3):753–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Kohli R, Shevitz A, Gorbach S, Wanke C. A randomized placebo-controlled trial of metformin for the treatment of HIV lipodystrophy. HIV Med. 2007;8(7):420–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Monroe AK, Glesby MJ, Brown TT. Diagnosing and managing diabetes in HIV-infected patients: current concepts. Clin Infect Dis. 2015;60(3):453–62.PubMedCrossRefGoogle Scholar
  70. 70.
    Schambelan M, Benson CA, Carr A, Currier JS, Dube MP, Gerber JG, et al. Management of metabolic complications associated with antiretroviral therapy for HIV-1 infection: recommendations of an international AIDS society-USA panel. J Acquir Immune Defic Syndr. 2002;31(3):257–75.PubMedCrossRefGoogle Scholar
  71. 71.
    Brown TT, Glesby MJ. Management of the metabolic effects of HIV and HIV drugs. Nat Rev Endocrinol. 2011;8(1):11–21.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Oriot P, Hermans MP, Selvais P, Buysschaert M, de la Tribonniere X. Exenatide improves weight loss insulin sensitivity and beta-cell function following administration to a type 2 diabetic HIV patient on antiretroviral therapy. Ann Endocrinol (Paris). 2011;72(3):244–6.CrossRefGoogle Scholar
  73. 73.
    Sheffield CA, Kane MP, Busch RS. Off-label use of exenatide for the management of insulin-resistant type 1 diabetes mellitus in an obese patient with human immunodeficiency virus infection. Pharmacotherapy. 2007;27(10):1449–55.PubMedCrossRefGoogle Scholar
  74. 74.
    Anz D, Kruger S, Haubner S, Rapp M, Bourquin C, Endres S. The dipeptidylpeptidase-IV inhibitors sitagliptin, vildagliptin and saxagliptin do not impair innate and adaptive immune responses. Diabetes Obes Metab. 2014;16(6):569–72.PubMedCrossRefGoogle Scholar
  75. 75.
    Handelsman Y, Henry RR, Bloomgarden ZT, Dagogo-Jack S, DeFronzo RA, Einhorn D, et al. American association of clinical endocrinologists and American College of endocrinology position statement on the association of Sglt-2 inhibitors and diabetic ketoacidosis. Endocr Pract. 2016;22(6):753–62.PubMedCrossRefGoogle Scholar
  76. 76.
    Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.PubMedCrossRefGoogle Scholar
  77. 77.
    Friis-Moller N, Thiebaut R, Reiss P, Weber R, Monforte AD, De Wit S, et al. Predicting the risk of cardiovascular disease in HIV-infected patients: the data collection on adverse effects of anti-HIV drugs study. Eur J Cardiovasc Prev Rehabil. 2010;17(5):491–501.PubMedCrossRefGoogle Scholar
  78. 78.
    Petoumenos K, Reiss P, Ryom L, Rickenbach M, Sabin CA, El-Sadr W, et al. Increased risk of cardiovascular disease (CVD) with age in HIV-positive men: a comparison of the D:A:D CVD risk equation and general population CVD risk equations. HIV Med. 2014;15(10):595–603.PubMedGoogle Scholar
  79. 79.
    Fitch KV, Anderson EJ, Hubbard JL, Carpenter SJ, Waddell WR, Caliendo AM, et al. Effects of a lifestyle modification program in HIV-infected patients with the metabolic syndrome. AIDS. 2006;20(14):1843–50.PubMedCrossRefGoogle Scholar
  80. 80.
    Robinson FP, Quinn LT, Rimmer JH. Effects of high-intensity endurance and resistance exercise on HIV metabolic abnormalities: a pilot study. Biol Res Nurs. 2007;8(3):177–85.PubMedCrossRefGoogle Scholar
  81. 81.
    Pool ER, Dogar O, Lindsay RP, Weatherburn P, Siddiqi K. Interventions for tobacco use cessation in people living with HIV and AIDS. Cochrane Database Syst Rev. 2016;6:CD011120.Google Scholar
  82. 82.
    Nuesch R, Wang Q, Elzi L, Bernasconi E, Weber R, Cavassini M, et al. Risk of cardiovascular events and blood pressure control in hypertensive HIV-infected patients: Swiss HIV cohort study (SHCS). J Acquir Immune Defic Syndr. 2013;62(4):396–404.PubMedCrossRefGoogle Scholar
  83. 83.
    Okeke NL, Davy T, Eron JJ, Napravnik S. Hypertension among HIV-infected patients in clinical care, 1996–2013. Clin Infect Dis. 2016;63(2):242–8.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Boccara F, Auclair M, Cohen A, Lefevre C, Prot M, Bastard JP, et al. HIV protease inhibitors activate the adipocyte renin angiotensin system. Antivir Ther. 2010;15(3):363–75.PubMedCrossRefGoogle Scholar
  85. 85.
    Ballocca F, Gili S, D’Ascenzo F, Marra WG, Cannillo M, Calcagno A, et al. HIV infection and primary prevention of cardiovascular disease: lights and shadows in the HAART era. Prog Cardiovasc Dis. 2016;58(5):565–76.PubMedCrossRefGoogle Scholar
  86. 86.
    Peyriere H, Eiden C, Macia JC, Reynes J. Antihypertensive drugs in patients treated with antiretrovirals. Ann Pharmacother. 2012;46(5):703–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Siest G, Jeannesson E, Visvikis-Siest S. Enzymes and pharmacogenetics of cardiovascular drugs. Clin Chim Acta. 2007;381(1):26–31.PubMedCrossRefGoogle Scholar
  88. 88.
    Dube MP, Stein JH, Aberg JA, Fichtenbaum CJ, Gerber JG, Tashima KT, et al. Guidelines for the evaluation and management of dyslipidemia in human immunodeficiency virus (HIV)-infected adults receiving antiretroviral therapy: recommendations of the HIV Medical Association of the Infectious Disease Society of America and the Adult AIDS Clinical Trials Group. Clin Infect Dis. 2003;37(5):613–27.PubMedCrossRefGoogle Scholar
  89. 89.
    Maki KC, Ridker PM, Brown WV, Grundy SM, Sattar N. An assessment by the statin diabetes safety task force: 2014 update. J Clin Lipidol. 2014;8(3 Suppl):S17–29.PubMedCrossRefGoogle Scholar
  90. 90.
    Erlandson KM, Jiang Y, Debanne SM, McComsey GA. Rosuvastatin worsens insulin resistance in HIV-infected adults on antiretroviral therapy. Clin Infect Dis. 2015;61(10):1566–72.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Calza L, Colangeli V, Magistrelli E, Manfredi R, Bon I, Re MC, et al. No correlation between statin exposure and incident diabetes mellitus in HIV-1-infected patients receiving combination antiretroviral therapy. HIV Med. 2016;17(8):631–3.PubMedCrossRefGoogle Scholar
  92. 92.
    Lichtenstein KA, Hart RL, Wood KC, Bozzette S, Buchacz K, Brooks JT. Statin use is associated with incident diabetes mellitus among patients in the HIV outpatient study. J Acquir Immune Defic Syndr. 2015;69:306–11.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Aberg JA, Sponsellar CA, Ward DJ, Kryzhanovski VA, Campbell SE, Thompson MA. Pitavastatin versus pravastatin in adults with HIV-1 infection and dyslipidaemia (INTREPID): 12 week and 52 week results of a phase 4, multicentre, randomised, double-blind, superiority trial. Lancet HIV. 2017;4(7):e284–94.PubMedCrossRefGoogle Scholar
  94. 94.
    Evaluating the Use of Pitavastatin to Reduce the Risk of Cardiovascular Disease in HIV-Infected Adults (REPRIEVE). https://clinicaltrials.gov/ct2/show/NCT02344290. Accessed 20 Nov 2017.
  95. 95.
    American Diabetes A. Standards of medical care in diabetes-2015 abridged for primary care providers. Clin Diabetes. 2015;33(2):97–111.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sowmya Chandra Reddy
    • 1
  • William Bealle Moore
    • 1
  • Papita Martina Rozario
    • 1
  • Amy H. Warriner
    • 1
    Email author
  1. 1.Division of Endocrinology, Diabetes and Metabolism, Department of Internal MedicineUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations