Advertisement

Data Augmentation for Deep Learning of Non-mydriatic Screening Retinal Fundus Images

  • E. Ulises Moya-SánchezEmail author
  • Abraham Sánchez
  • Miguel Zapata
  • Jonathan Moreno
  • D. Garcia-Gasulla
  • Ferran Parrés
  • Eduard Ayguadé
  • Jesús Labarta
  • Ulises Cortés
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 948)

Abstract

Fundus image is an effective and low-cost tool to screen for common retinal diseases. At the same time, Deep Learning (DL) algorithms have been shown capable of achieving similar or even better performance accuracies than physicians in certain image classification tasks. One of the key aspects to improve the performance of DL models is to use data augmentation techniques. Data augmentation reduces the impact of overfitting and improves the generalization capacity of the models. However, the most appropriate data augmentation methodology is highly dependant on the nature of the problem. In this work, we propose a data augmentation and image enhancement algorithm for the task of classifying non-mydriatic fundus images of pigmented abnormalities in the macula. For training, fine tuning and data augmentation, we used the Barcelona Supercomputing Centre cluster CTE IBM Power8+ and Marenostrum IV. The parallelization and optimization of the algorithms were performed using Numba, and Python-Multiprocessing, made compatible with the underlying DL framework used for training the model. We propose and trained a specific DL model from scratch. Our main results are an increase in the number of input images up to a factor of, and report the information of quality images for. As a result, our data augmentation approach results in an increase of up to 9% in classification accuracy.

Keywords

Deep learning Data augmentation Retinal fundus images 

References

  1. 1.
    Jin, K., Lu, H., Su, Z., Cheng, C., Ye, J., Qian, D.: Telemedicine screening of retinal diseases with a handheld portable non-mydriatic fundus camera. BMC Ophthalmol. 17(1), 89 (2017)CrossRefGoogle Scholar
  2. 2.
    Bennett, T.J., Barry, C.J.: Ophthalmic imaging today: an ophthalmic photographer’s viewpoint-a review. Clin. Exp. Ophthalmol. 37(1), 2–13 (2009)CrossRefGoogle Scholar
  3. 3.
    Bruce, B.B., Newman, N.J., Pérez, M.A., Biousse, V.: Non-mydriatic ocular fundus photography and telemedicine: past, present, and future. Neuro-Ophthalmology 37(2), 51–57 (2013)CrossRefGoogle Scholar
  4. 4.
    Wang, S., Jin, K., Lu, H., Cheng, C., Ye, J., Qian, D.: Human visual system-based fundus image quality assessment of portable fundus camera photographs. IEEE Trans. Med. Imaging 35(4), 1046–1055 (2016)CrossRefGoogle Scholar
  5. 5.
    Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRefGoogle Scholar
  6. 6.
    Lemley, J., Bazrafkan, S., Corcoran, P.: Smart augmentation learning an optimal data augmentation strategy. IEEE Access 5, 5858–5869 (2017)CrossRefGoogle Scholar
  7. 7.
    Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621 (2017)
  8. 8.
    Chollet, F., et al.: Keras (2015). https://github.com/keras-team/keras
  9. 9.
    February 2018Google Scholar
  10. 10.
    Dodge, S., Karam, L.: Understanding how image quality affects deep neural networks. In: 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–6. IEEE (2016)Google Scholar
  11. 11.
    Pizer, S.M., et al.: Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 39(3), 355–368 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • E. Ulises Moya-Sánchez
    • 1
    • 2
    Email author
  • Abraham Sánchez
    • 2
  • Miguel Zapata
    • 3
  • Jonathan Moreno
    • 1
  • D. Garcia-Gasulla
    • 1
  • Ferran Parrés
    • 1
  • Eduard Ayguadé
    • 1
    • 4
  • Jesús Labarta
    • 1
    • 4
  • Ulises Cortés
    • 1
    • 4
  1. 1.Barcelona Supercomputing CenterBarcelonaSpain
  2. 2.Posgrado en Ciencias ComputacionalesUniversidad Autónoma de GuadalajaraGuadalajaraMexico
  3. 3.Ophthalmology, Hospital Vall d’Hebron, BarcelonaBarcelonaSpain
  4. 4.Universitat Politèctnica de Catalunya, Barcelona TechBarcelonaSpain

Personalised recommendations