Use of High Performance Computing to Simulate Cosmic-Ray Showers Initiated by High-Energy Gamma Rays

  • Cederik de León
  • Humberto Salazar
  • Luis VillaseñorEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 948)


We use the supercomputer from the Laboratorio Nacional de Supercómputo del Sureste de México (LNS) to simulate secondary cosmic-ray showers initiated by gamma rays with energies between 100 GeV and 100 TeV. These simulations play an important role in the search for gamma ray bursts (GRB) in ground observatories, such as the High Altitude Water Cherenkov (HAWC) observatory located in Sierra Negra, Mexico. GRB are the most energetic explosions observed so far in our Universe and they have been observed only in satellite detectors such as Fermi/GBM, Swift/BAT and INTEGRAL. Their observation in ground observatories will constitute an important scientific breakthrough in the field of astroparticle physics. We use MPI to run simulation code in parallel on hundreds of CPU cores from the LNS. In particular we use the CORSIKA Monte Carlo shower generator with zenith angles of the primary gamma rays between 0 and 45° and azimuth angles between 0 and 360° with an spectral index of −2. We report on benchmark results on the speed and scalability of our code as a function of the number of CPU cores. The authors are members of the HAWC Collaboration, they use high performance computing to analyze the data collected with the HAWC Observatory.


Gamma ray bursts Extensive air showers High performance computing Simulations Gamma rays 


  1. 1.
    Abeysekara, A.U., et al.: Daily monitoring of TeV gamma-ray emission from Mrk 421 Mrk 501 and the Crab Nebula with HAWC. Astrophys. J. 841(2)Google Scholar
  2. 2.
    Bertou, X., LAGO Collaboration: The large aperture GRB observatory. In: AIP Conference Proceedings, vol. 1123, p. 197 (2009).
  3. 3.
    Laboratorio Nacional de Super Cómputo del Sureste.
  4. 4.
    Heck, D., Knapp, J., Capdevielle, J.N., Schatz, G., Thouw, T.: CORSIKA: a Monte Carlo Code to Simulate Extensive Air Showers Institute for Nuclear Physics. Forschungszentrum und Universität Karlsruhe, Karlsruhe College de France, ParisGoogle Scholar
  5. 5.
    Abeysekara, A.U., et al.: Data acquisition architecture and online processing system for the HAWC gamma-ray observatory. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 888, 138–146 (2018). Scholar
  6. 6.
    Kobal, M.: A thinning method using weight limitation for air-shower simulations. Astropart. Phys. 15, 259 (2001)CrossRefGoogle Scholar
  7. 7.
    Sciutto, S.J.: AIRES, a system for air shower simulation and analysis. In: Proceeding of 27th ICRC, vol. 1, p. 237 (2001)Google Scholar
  8. 8.
    de Dios Álvarez, J., Cotti, U., de León, C.: Computer time optimization in extensive air showers simulations. PoS (ICRC 2017), p. 292 (2017)Google Scholar
  9. 9.
    Billoir, P.: A sampling procedure to regenerate particles in a ground detector from a “thinned” air shower simulation output. Astropart. Phys. 30, 270 (2008)CrossRefGoogle Scholar
  10. 10.
    Stokes, B.T., Cady, R., Ivanov, D., Matthews, J.N., Thomson, G.B.: Dethinning extensive air shower simulations. Astropart. Phys. 35, 759 (2012). arXiv:1104.3182CrossRefGoogle Scholar
  11. 11.
    Kuzmin, V.A., Rubtsov, G.I.: No-thinning simulations of extensive air showers and small–scale fluctuations at the ground level. JETP Lett. 85, 535 (2007)CrossRefGoogle Scholar
  12. 12.
    Pierog, T., Engela, R., Hecka, D., Poghosyanb, G., Oehlschlägera, J., Veberic, D.: Ultra-high energy air shower simulation without thinning in CORSIKA. ICRC (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Cederik de León
    • 1
  • Humberto Salazar
    • 1
  • Luis Villaseñor
    • 1
    Email author
  1. 1.Laboratorio Nacional de Supercómputo del Sureste de MéxicoBenemérita Universidad Autónoma de PueblaPueblaMexico

Personalised recommendations