Advertisement

3D Image Reconstruction System for Cancerous Tumors Analysis Based on Diffuse Optical Tomography with Blender

  • Marco Antonio Ramírez-SalinasEmail author
  • Luis Alfonso Villa-VargasEmail author
  • Neiel Israel Leyva-SantesEmail author
  • César Alejandro Hernández-CalderónEmail author
  • Sael González-RomeroEmail author
  • Miguel Angel Aleman-ArceEmail author
  • Eduardo San Martín-MartínezEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 948)

Abstract

There are different studies that allow detecting the presence of cancer cells in a patient; however, the time it takes to obtain a correct diagnosis is critical for these cases. This work presents the design and construction of a prototype as first approach for a microtomograph based on Diffuse Optical Tomography (DOT). Diffused Optical Tomography is a technique that uses light from the Near Infrared Region (NIR) to measure tissue’s optical properties that has become relevant for the medical field due to it being a non-invasive technique. The main goal of this device is to be able to detect and analyze cancerous tumors by measuring diffuse photon densities in turbid media. As a first phase of the development, this project integrates an image acquisition mechanism, an image processing interface at software level developed with Blender to exploit a GPU architecture to optimize the execution time.

Keywords

Microtomography Diffused Optical Tomography Blender 3D reconstruction 

References

  1. 1.
    Schweiger, M., Gibson, A., Arridge, S.R.: Computational aspects of diffuse optical tomography. Comput. Sci. Eng. 5(6), 33–41 (2003).  https://doi.org/10.1109/mcise.2003.1238702CrossRefGoogle Scholar
  2. 2.
    Laal, M.: Innovation process in medical imaging. Procedia - Soc. Behav. Sci. 81, 60–64 (2013).  https://doi.org/10.1016/j.sbspro.2013.06.388. ISSN 1877-0428CrossRefGoogle Scholar
  3. 3.
    Erturk, S.M., Johnston, C., Tempany-Afdhal, C., Van den Abbeele, A.D.: Imaging Tools in Human Research. In: Clinical and Traslational Science - Principles of Human Research Chapter 6, pp. 87–104 (2009). Accessed 23 Feb 2009CrossRefGoogle Scholar
  4. 4.
    National Research Council (US) and Institute of Medicine (US) Committee on the Mathematics and Physics of Emerging Dynamic Biomedical Imaging. Mathematics and Physics of Emerging Biomedical Imaging. National Academies Press (US), Washington (DC) (1996). Chapter 11, Medical Optical Imaging. https://www.ncbi.nlm.nih.gov/books/NBK232476/
  5. 5.
    Leff, D.R., et al.: Diffuse optical imaging of the healthy and diseased breast: a systematic review. Breast Cancer Res. Treat. 108(1), 9–22 (2008)CrossRefGoogle Scholar
  6. 6.
    Dehghani, H., et al.: Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction. Commun. Numer. Methods Eng. 25(6), 711–732 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Stuker, F., Ripoll, J., Rudin, M.: Fluorescence molecular tomography: principles and potential for pharmaceutical research. Pharmaceutics 3(2), 229–274 (2011).  https://doi.org/10.3390/pharmaceutics3020229CrossRefGoogle Scholar
  8. 8.
    Konovalov, A.B., Vlasov, V.V.: Analytical representation of the sensitivity functions for high resolution image reconstruction in parallel-plate time domain diffuse optical tomography. In: 2017 Progress Electromagnetics Research Symposium - Spring (PIERS), St. Petersburg, pp. 3487–3494 (2017).  https://doi.org/10.1109/piers.2017.8262364
  9. 9.
    Leff, D.R., Warren, O.J., Enfield, L.C., et al.: Breast Cancer Res. Treat. 108, 9 (2008).  https://doi.org/10.1007/s10549-007-9582-zCrossRefGoogle Scholar
  10. 10.
    Godavarty, A., Rodriguez, S., Jung, Y.-J., Gonzalez, S.: Optical imaging for breast cancer prescreening. Breast Cancer: Targets Ther. 7, 193–209 (2015).  https://doi.org/10.2147/BCTT.S51702CrossRefGoogle Scholar
  11. 11.
    Taka, S.J., Srinivasan, S.: NIRViz: 3D visualization software for multimodality optical imaging using visualization toolkit (VTK) and Insight Segmentation Toolkit (ITK). J. Digit. Imaging: Off. J. Soc. Comput. Appl. Radiol. 24, 1103–1111 (2011).  https://doi.org/10.1007/s10278-011-9362-5CrossRefGoogle Scholar
  12. 12.
    Landis, E.N., Keane, D.T.: X-ray microtomography. Materials Characterization 61(12), 1305–1316 (2010). ISSN 1044-5803,  https://doi.org/10.1016/j.matchar.2010.09.012CrossRefGoogle Scholar
  13. 13.
    Boerckel, J.D., Mason, D.E., McDermott, A.M., Alsberg, E.: Microcomputed tomography: approaches and applications in bioengineering. Stem Cell Res. Ther. 5(6), 144 (2014).  https://doi.org/10.1186/scrt534CrossRefGoogle Scholar
  14. 14.
    Vasquez, K.O., Casavant, C., Peterson, J.D.: Quantitative whole body biodistribution of fluorescent-labeled agents by non-invasive tomographic imaging. PLoS One 6, e20594 (2011)CrossRefGoogle Scholar
  15. 15.
    Johnson, I.D.: Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies, Life Technologies Corporation (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centro de Investigación en Computación, Instituto Politécnico NacionalMexico CityMexico
  2. 2.Centro de Nanociencias y Micro y Nanotecnologías del Instituto Politécnico NacionalMexico CityMexico
  3. 3.Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico NacionalMexico CityMexico

Personalised recommendations