Theoretical Calculation of Photoluminescence Spectrum Using DFT for Double-Wall Carbon Nanotubes

  • A. P. Rodríguez VictoriaEmail author
  • Javier Martínez Juárez
  • J. A. David Hernández de la Luz
  • Néstor David Espinosa-Torres
  • M. J. Robles-Águila
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 948)


Using DFT theory, we calculated theoretically photoluminescence (PL) spectra of double-walled carbon nanotubes (DWCNTs). Using the supercomputer (LNS) tool, the photoluminescence spectra for eight double-walled nanotubes were calculated with the Gaussian09 software; the DWCNTs built are of the armchair/armchair type, (3,3)/(2,2), (6,6)/(3,3), (8,8)/(4,4), (10,10)/(5,5), (12,12)/(6,6), (14,14)/(7,7), (16,16)/(8,8) and (18,18)/(9,9). The calculations were obtained taking into account different DWCNT lengths ranging from 4.9 Å to 23.4 Å when changing the chirality (n, m) of the double-walled carbon nanotubes, as well as we considered the increase in their inter-radial distance ranging from 0.18 ≤ dR ≤ 0.62 nm. The objective of this work focuses on investigating the DWCNTs PL considering different atomic arrangements. The calculation was performed at a DFT level in which we used the Generalized Gradient Approximation (GGA) to establish the molecular geometries and the fundamental state energies. To obtain the results of the PL spectra, the DWCNTs were optimized in their ground state, with the hybrid function CAM-B3LYP, which is a mixed functional exchange and correlation and the base set that was used is the 6–31 G.


Photoluminescence DWCNT Spectrum DFT Radial distance 



“The authors thankfully acknowledge the computer resources, technical expertise and support provided by the Laboratorio Nacional de Supercómputo del Sureste de México”. This work has also been partially supported by Project 100145955-VIEP2018. NDET is grateful for the Posdoctoral Scholarship provided by CONACYT with Project No. 229741.


  1. 1.
    Wei, C., Cho, K., Srivastava, D.: Tensile strength of carbon nanotubes under realistic temperature and starin rate. Phys. Rev. B 67, 115407 (2003). Scholar
  2. 2.
    Charlier, J.C., Michenaud, J.P.: Energetics of multilayered carbon tubules. Phys. Rev. Lett. 70, 1858 (1993). Scholar
  3. 3.
    Okazaki, T., et al.: Photoluminescence quenching in peapod-derived double-walled carbon nanotubes. Phys. Rev. B 74, 153404 (2006). Scholar
  4. 4.
    Koyama, T., Asada, Y., Hikosaka, N., Miyata, Y., Shinohara, H., Nakamura, A.: Ultrafast exciton energy transfer between nanoscales coaxial cylinders: intertube transfer and luminescence quenching in double-walled carbon nanotubes. ACS Nano 5(7), 5881–5887 (2011). Scholar
  5. 5.
    Kishi, N., Kikuchi, S., Ramesh, P., Sugai, T., Watanabe, Y., Shinohara, H.: Enhanced photoluminescence from very thin double-wall carbon nanotubes synthesized by the zeolite-CCVD method. J. Phys. Chem. B 110(49), 24816–24821 (2006). Scholar
  6. 6.
    Iakoubovskii, K., Minami, N., Ueno, T., Kazaoui, S., Kataura, H.: Optical characterization of double wall carbon nanotubes: evidence for inner tube shielding. J. Phys. Chem. C 112(30), 11194–11198 (2008). Scholar
  7. 7.
    Muramatsu, H., et al.: Bright photoluminescence from the inner tubes of “peapod”-derived double-walled carbon nanotubes. Small 5(23), 2678–2682 (2009). Scholar
  8. 8.
    Yang, S., Parks, A.N., Saba, S.A., Ferguson, P.L., Liu, J.: Photoluminescence from inner walls in double-walled carbon nanotubes: some do, some do not. Nano Lett. 11, 4405–4410 (2011). Scholar
  9. 9.
    Flahaut, E., Bacsa, R., Peigney, A., Laurent, C.: Gram-scale CCVD synthesis of double-walled carbon nanotubes. Chem. Commun. 1442–1443 (2003).
  10. 10.
    Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993). Scholar
  11. 11.
  12. 12.
    Dirac, P.A.M.: Note on exchange phenomena. Proc. Camb. Phil. Soc. 26, 376 (1930). Scholar
  13. 13.
    Yanai, T., Tew, D.P., Handy, N.C.: A new hybrid exchange-correlation functional using the Columb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004). Scholar
  14. 14.
    Liu, J., et al.: Science 280, 1253 (1998). Scholar
  15. 15.
    Lee, C., Yang, W., Parr, R.G.: Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • A. P. Rodríguez Victoria
    • 1
    Email author
  • Javier Martínez Juárez
    • 1
  • J. A. David Hernández de la Luz
    • 1
  • Néstor David Espinosa-Torres
    • 2
  • M. J. Robles-Águila
    • 1
  1. 1.Centro de investigaciones en Dispositivos Semiconductores (CIDS) del ICUAPBenemérita Universidad Autónoma de Puebla (BUAP)PueblaMexico
  2. 2.Instituto de Energías Renovables (IER-UNAM)TemixcoMexico

Personalised recommendations