Advertisement

The Use of HPC on Volcanic Tephra Dispersion Operational Forecast System

  • Agustín García-ReynosoEmail author
  • Jorge Zavala-Hidalgo
  • Hugo Delgado-Granados
  • Dulce R. Herrera-Moro
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 948)

Abstract

High Performance Computing (HPC) was used to estimate the tephra dispersion forecast in an operational mode using the Popocatepetl volcano as base case. Currently it is not possible to forecast a volcanic eruption, which can occur at any time. In order to reduce the human intervention for obtaining immediate ash deposition information, the HPC was used to compute a wide spectrum of possible eruptions and dispersion scenarios; information obtained from previous eruptions and meteorological forecast was used to generate the possible scenarios. Results from the scenarios are displayed in a web page for consultation and decision-making when a real eruption occurs. This work shows the methodology approach used to forecast the tephra dispersion from a possible eruption, the computing strategy to reduce the processing time and a description of products displayed.

Keywords

Ash dispersion Tephra Popocatépetl Forecast 

Notes

Acknowledgement

The forecast system described above was carried out with the financial support from the Ministry of the Interior (Secretaría de Gobernación) through the Risk Management Office (Dirección General de Gestión de Riesgos) under the Fund for Natural Disaster Prevention (FOPREDEN) grant E.III.02. The final system was designed following needs explicitly expressed by the personnel of CENAPRED in order to have a tool focused in their needs for decision-making. The system is currently operated by the CENAPRED and issued to warn the Civil Defense as well as the Civil Aviation (Dirección General de Aviación Civil). NCEP NOAA, meteorological datasets. We thank to Luisa Molina for the proofreading of this text.

References

  1. 1.
    Rivera Tapia, J.A., Yáñez Santos, A., Cedillo Ramírez, L.: Emisión de ceniza volcánica y sus efectos. Ecosistemas 14(3), 107–115 (2005)Google Scholar
  2. 2.
    Jimenez-Escalona, J.C., Monsivais-Huertero, A., Avila-Razo, J.E.: Maps risk generations for volcanic ash monitoring using modis data and its application in risk maps for aviation hazard mitigation: case of study Popocatepetl Volcano (Mexico). In: 2016 IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS), IEEE (2016)Google Scholar
  3. 3.
    Linares-Lopez, C.: Análisis granulométricos y modales en cenizas emitidas por el Volcán Popocatépetl de 1994 a 1998 (2001). http://132.248.9.195/pd2001/299833/Index.html
  4. 4.
    Martin-Del Pozzo, A.L., Gonzalez-Moran, T., Espinasa-Perea, R., Butron, M.A., Reyes, M.: Characterization of the recent ash emissions at Popocatepetl Volcano, Mexico. J. Volcanol. Geoth. Res. 170, 61–75 (2008)CrossRefGoogle Scholar
  5. 5.
    Martin-Del Pozzo, A.L., Rodríguez, A., Portocarrero, J.: Reconstructing 800 years of historical eruptive activity at Popocatepetl Volcano, Mexico. Bull. Volcanol. 78, 1–13 (2016)CrossRefGoogle Scholar
  6. 6.
    Skamarock, W.C., et al.: A description of the advanced research WRF version 2 (No. NCAR/TN-468+ STR). National Center For Atmospheric Research Boulder Co Mesoscale and Microscale Meteorology Div. (2005)Google Scholar
  7. 7.
    Folch, A., Costa, A., Macedonio, G.: FALL3D: a computational model for transport and deposition of volcanic ash. Comput. Geosci. 35, 1334–1342 (2009)CrossRefGoogle Scholar
  8. 8.
    Brown, D., Brownrigg, R., Haley, M., Huang, W.: The NCAR Command Language (NCL) (version 6.0.0). UCAR/NCAR Computational and Information Systems Laboratory, Boulder, CO (2012).  https://doi.org/10.5065/d6wd3xh5
  9. 9.
    NOAA National Centers for Environmental Prediction (NCEP): NOAA/NCEP Global Forecast System (GFS) Atmospheric Model (2011). https://www.emc.ncep.noaa.gov/index.php?branch=GFS
  10. 10.
    Thompson, G., Field, P.R., Rasmussen, R.M., Hall, W.D.: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization. Mon. Weather Rev. 136, 5095–5115 (2008)CrossRefGoogle Scholar
  11. 11.
    Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res.: Atmos. 102, 16663–16682 (1997)CrossRefGoogle Scholar
  12. 12.
    Chou, M.-D., Suarez, M.: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, vol. 3, 84 p. (1994). (NASA Center for Aerospace Information, 800 Elkridge Landing Rd., Linthicum Heights, MD 21090-2934). http://www.worldcat.org/title/efficient-thermal-infrared-radiation-parameterization-for-use-in-general-circulation-models/oclc/919970577
  13. 13.
    Janić, Z.I.: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Centers for Environmental Prediction (2001). https://repository.library.noaa.gov/view/noaa/11409
  14. 14.
    Ek, M., et al.: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res.: Atmos. 108 (2003)Google Scholar
  15. 15.
    Mellor, G.L., Yamada, T.: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 20, 851–875 (1982)CrossRefGoogle Scholar
  16. 16.
    Kain, J.S.: The Kain-Fritsch convective parameterization: an update. J. Appl. Meteorol. 43, 170–181 (2004)CrossRefGoogle Scholar
  17. 17.
    Skamarock, W.C., et al.: A description of the advanced research WRF version 2. National Center for Atmospheric Research Boulder Colorado Mesoscale and Microscale Meteorology Division (2005)Google Scholar
  18. 18.
    Costa, A., Macedonio, G., Folch, A.: A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth Planet. Sci. Lett. 241, 634–647 (2006)CrossRefGoogle Scholar
  19. 19.
    Ganser, G.H.: A rational approach to drag prediction of spherical and nonspherical particles. Powder Technol. 77, 143–152 (1993)CrossRefGoogle Scholar
  20. 20.
    Granados, H.D., De la Cruz Reyna, S., Tilling, R.I.: The 1994–present eruption of popocatépetl volcano: background, current activity, and impacts. J. Volcanol. Geoth. Res. 1(170), 1–4 (2008)Google Scholar
  21. 21.
    Quezada-Reyes, A., Lesage, P., Valdés-González, C., Perrier, L.: An analysis of the seismic activity of Popocatepetl volcano, Mexico, associated with the eruptive period of December 2002 to February 2003: looking for precursors. Geol. Soc. Am. Spec. Pap. 498, 89–106 (2013)Google Scholar
  22. 22.
    Cross, J., Roberge, J., Jerram, D.: Constraining the degassing processes of Popocatépetl Volcano, Mexico: a vesicle size distribution and glass geochemistry study. J. Volcanol. Geoth. Res. 225, 81–95 (2012)CrossRefGoogle Scholar
  23. 23.
    Woodhouse, M., Hogg, A., Phillips, J., Sparks, R.: Interaction between volcanic plumes and wind during the 2010 Eyjafjallajökull eruption, Iceland. J. Geophys. Res.: Solid Earth 118, 92–109 (2013)CrossRefGoogle Scholar
  24. 24.
    Cornell, W., Carey, S., Sigurdsson, H.: Computer simulation of transport and deposition of the Campanian Y-5 ash. J. Volcanol. Geoth. Res. 17, 89–109 (1983)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Agustín García-Reynoso
    • 1
    Email author
  • Jorge Zavala-Hidalgo
    • 1
  • Hugo Delgado-Granados
    • 2
  • Dulce R. Herrera-Moro
    • 1
  1. 1.Centro de Ciencias de la AtmosferaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations