Early Vision and Cognitive Penetrability

  • Athanassios RaftopoulosEmail author
Part of the Palgrave Innovations in Philosophy book series (PIIP)


In this chapter, I defend the thesis that early vision is Cognitively Impenetrable (CI) against very recent criticisms, some of them aimed specifically at my arguments, which state that neurophysiological evidence shows that early vision is affected in a top-down manner by cognitive states. This criticism comes from (a) studies on fast object recognition; (b) pre-cueing studies; and (c) imaging studies that examine the recurrent processes in the brain during visual perception. I argue that upon closer examination, all this evidence supports rather than defeats the thesis that early vision is CI, because it shows that (a) the information used in early vision to recognize objects very fast is not cognitive information; (b) the processes of early vision do not use the cognitive information that issues cognitive demands guiding attention or expectation in pre-cueing studies; and (c) the recurrent processes in early vision are purely stimulus-driven and do not involve any cognitive signals.


  1. Arratha, M., & Moore, C. M. (2014). Orientation summary statistics are limited in processing capacity. Visual Cognition, 22(8), 1018–1022.CrossRefGoogle Scholar
  2. Arratha, M., & Moore, C. M. (2015a). The perceptual processing capacity of summary statistics between and within feature dimensions. Journal of Vision, 15(4), 1–17.CrossRefGoogle Scholar
  3. Arratha, M., & Moore, C. M. (2015b). The capacity limitations of orientation summary statistics. Attention, Perception, Psychophysics, 77, 116–1131.Google Scholar
  4. Balas, B., Nakano, L., & Rosenholtz, R. (2009). A summary-statistic representation in peripheral vision explains visual crowding. Journal of Vision, 9(12), 13.CrossRefGoogle Scholar
  5. Beck, D. M., & Kastner, S. (2009). Top-down and bottom-up mechanisms in biasing competition in the human brain. Vision Research, 49, 1154–1165.CrossRefGoogle Scholar
  6. Biederman, I. (1987). Recognition by components: A theory of human image understanding. Psychological Review, 94, 115–147.CrossRefGoogle Scholar
  7. Block, N. (2007). Two neural correlates of consciousness. In N. Block (Ed.), Collected Papers, vol. 1 (pp. 342–362). Cambridge: MIT Press.Google Scholar
  8. Block, N. (2014). Seeing-as in the light of vision science. Philosophy and Phenomenological Research, 89(3), 560–572.CrossRefGoogle Scholar
  9. Brogaard, B., & Gatzia, D. (2017). Color and cognitive penetrability. Topics in Cognitive Science, 9(1), 193–214.CrossRefGoogle Scholar
  10. Bronfman, Z. Z., Brezis, N., Jacobson, H., & Usher, M. (2014). We see more that we can report: ‘Cost free’ color phenomenality outside focal attention. Psychological Science, 25(7), 1394–1403.CrossRefGoogle Scholar
  11. Bullier, J. (2001). Integrated model of visual processing. Brain Research Reviews, 36, 96–107.CrossRefGoogle Scholar
  12. Burge, T. (2010). Origins of Objectivity. Oxford: Clarendon Press.CrossRefGoogle Scholar
  13. Campbell, J. (2006). Does visual attention depend on sortal classification? Reply to Clark. Philosophical Studies, 127, 221–237.CrossRefGoogle Scholar
  14. Cant, J. S., Sun, S. Z., & Xu, Y. (2015). Distinct cognitive mechanisms involved in the processing of single objects and object ensembles. Journal of Vision, 15(4), 1–21.CrossRefGoogle Scholar
  15. Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51, 1484–1525.CrossRefGoogle Scholar
  16. Carrasco, M., Ling, S., & Read, S. (2004). Attention alters appearance. Nature Neuroscience, 7, 308–313.CrossRefGoogle Scholar
  17. Cavanagh, P. (2011). Visual cognition. Vision Research, 51, 1538–1551.CrossRefGoogle Scholar
  18. Cecchi, A. (2014). Cognitive penetration, perceptual learning, and neural plasticity. Dialectica, 68(1), 63–95.CrossRefGoogle Scholar
  19. Chaumon, M., Drouet, V., & Tallon-Baudry, C. (2008). Unconscious associative memory affects visual processing before 100 ms. Journal of Vision, 8(3), 1–10.CrossRefGoogle Scholar
  20. Chelazzi, L., Miller, E., Duncan, J., & Desimone, R. (1993). A neural basis for visual search in inferior temporal cortex. Nature, 363, 345–347.CrossRefGoogle Scholar
  21. Chong, S. C., & Treisman, A. (2003). Representation of statistical properties. Vision Research, 43(4), 393–404.CrossRefGoogle Scholar
  22. Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36, 181–253.CrossRefGoogle Scholar
  23. Crane, T. (2009). Is perception a propositional attitude. The Philosophical Quarterly, 59(236), 453–470.CrossRefGoogle Scholar
  24. Crouzet, S. M., Kirchner, H., & Thorpe, S. J. (2010). Fast saccades toward faces: Face detection in just 100 ms. Journal of Vision, 10(4), 1–17.CrossRefGoogle Scholar
  25. Davis, M. (1995). Tacit knowledge and subdoxastic states. In C. MacDonald & G. MacDonald (Eds.), Philosophy of Psychology: Debates on psychological Explanation. Oxford: Blackwell.Google Scholar
  26. Delorme, A., Rousselet, G. A., Mace, M. J.-M., & Fabre-Thorpe, M. (2004). Interaction of top-down and bottom up processing in the fast visual analysis of natural scenes. Brain Research, 19, 103–113.Google Scholar
  27. Dennett, D. C. (1983). Styles of mental representation. Proceedings of the Aristotelian Society, 83, 213–226.CrossRefGoogle Scholar
  28. Deroy, O. (2013). Object-sensitivity versus cognitive penetrability of perception. Philosophical Studies, 162, 87–107.CrossRefGoogle Scholar
  29. Drewes, J., Goren, G., Zhu, W., & Elder, J. H. (2016). Recurrent processing in the formation of percept shapes. The Journal of Neuroscience, 36(1), 185–192.CrossRefGoogle Scholar
  30. Eisenberg, M. L., & Zacks, J. M. (2016). Ambient and focal visual processing of naturalistic activity. Journal of Vision, 16(2), 1–12.CrossRefGoogle Scholar
  31. Evans, G. (1982). The Varieties of Reference. Oxford: Clarendon Press.Google Scholar
  32. Evans, M. A., Shedden, J. M., Hevenor, S. J., & Hahn, M. C. (2000). The effect of variability of unattended information on global and local processing: Evidence from lateralization at early stages of processing. Neurophysiologia, 38, 225–239.Google Scholar
  33. Firestone, C., & Scholl, B. J. (2016). Cognition does not affect perception: Evaluating the evidence for ‘top-down’ effects. Behavioral and Brain Sciences.
  34. Fodor, J. (1983). The Modularity of Mind. Cambridge: MIT Press.Google Scholar
  35. Fodor, J. (2007). The revenge of the given. In B. P. McLaughlin & J. Cohen (Eds.), Contemporary Debates in the Philosophy of Mind. Malden, MA: Blackwell.Google Scholar
  36. Fodor, J., & Pylyshyn, Z. (2015). Minds Without Meanings: An Essay on the Content of Concepts. Cambridge: MIT Press.Google Scholar
  37. Foxe, J. J., & Simpson, G. V. (2002). Flow of activation from V1 to frontal cortex in humans. Experimental Brain Research, 142(1), 139–150.CrossRefGoogle Scholar
  38. Frassle, S., Sommer, J., Jansen, A., Naber, M., & Einhauser, W. (2014). Binocular rivalry: Frontal activity relates to introspection and action but no to perception. The Journal of Neuroscience, 34(1), 1738–1747.CrossRefGoogle Scholar
  39. Freiwald, W. A., & Kanwisher, N. G. (2004). Visual elective attention: Evidence from brain imaging and neurophysiology. In M. Gazzaniga (Ed.), The Cognitive Neurosciences III (3rd ed.). Cambridge: MIT Press.Google Scholar
  40. Gatzia, D., & Brogaard, B. (2017). The real epsitemic significance of percptual learning. Inquiry, 543–558. Scholar
  41. Gilbert, C. D., & Li, W. (2013). Top-down influences on visual processing. Nature Reviews Neuroscience, 14(5), 350–363.CrossRefGoogle Scholar
  42. Gilbert, C. D., Ito, M., Kapadia, M., & Westheimer, G. (2000). Interactions between attention, context and learning in primary visual cortex. Vision Research, 40, 1217–1226.CrossRefGoogle Scholar
  43. Goldstone, R. L., de Leeuw, J. R., & Landy, D. H. (2015). Fitting perception in and to cognition. Cognition, 135, 24–29.CrossRefGoogle Scholar
  44. Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain: Neural models of stimulus-specific effects. Trends in Cognitive Sciences, 10, 14–23.CrossRefGoogle Scholar
  45. Grill-Spector, K., Kushnir, T., Hendler, T., Edelman, S., Itzchak, Y., & Malach, R. (1998). A sequence of object-processing stages revealed by FMRI in the Human occipital lobe. Human Brain Mapping, 6, 316–328.CrossRefGoogle Scholar
  46. Haugeland, J. (1998). Having Thought. Cambridge: Harvard University Press.Google Scholar
  47. Hayden, B. Y., & Gallant, J. L. (2009). Combined effects of spatial and feature-based attention on responses to V4 neurons. Visio Research, 49, 1182–1187.CrossRefGoogle Scholar
  48. Heck, R. G., Jr. (2007). Are there different kinds of content? In J. Cohen & B. McLaughlin (Eds.), Contemporary Debates in the Philosophy of Mind. Oxford: Blackwell.Google Scholar
  49. Heeger, D. J., & Ress, D. (2004). Neuronal correlates of visual attention and perception. In M. Gazzaniga (Ed.), The Cognitive Neurosciences (3rd ed.). Cambridge: MIT Press.Google Scholar
  50. Hegde, J., & Kersten, D. (2010). A link between visual disambiguation and visual memory. The Journal of Neuroscience, 30(45), 15124–15133.CrossRefGoogle Scholar
  51. Heinen, K., Jolij, J., & Lamme, V. A. (2015). Figure-ground segregation requires two distinct periods of activity in V1: A transcranial magnetic study. Neuroreport, 16(13), 1483–1487.Google Scholar
  52. Hopfinger, J. B., Luck, S. J., & Hillyard, S. A. (2004). Selective attention. In M. S. Gazzaniga (Ed.), The Cognitive Neuroscience (3rd ed.). Cambridge: MIT Press.Google Scholar
  53. Im, H. Y., & Halberda, J. (2013). The effects of sampling and internal noise of the representation of ensemble average size. Attention, Perception, Psychophysics, 75, 278–286.CrossRefGoogle Scholar
  54. Innui, K., & Kakigi, R. (2006). Temporal analysis of the flow from V1 to extrastriate cortex. Journal of Neurophysiology, 96, 775–784.CrossRefGoogle Scholar
  55. Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2, 194–204.CrossRefGoogle Scholar
  56. Johnson, J. S., & Olshausen, B. A. (2005). The earliest EEG signatures of object recognition in a cued target task are postsensory. Journal of Vision, 5, 299–312.Google Scholar
  57. Johnston, M. (2006). Better than mere knowledge: The function of sensory awareness. In T. S. Gendler & J. Hawthorne (Eds.), Perceptual Experience. Oxford: Clarendon Press.Google Scholar
  58. Joulesz, B. (1981). Textons, the elements of texture perception, and their interactions. Nature, 90(12), 91–97.CrossRefGoogle Scholar
  59. Kastner, S., & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience, 23, 315–341.CrossRefGoogle Scholar
  60. Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R., & Ungerleider, L. (1999). Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron, 22, 751–761.CrossRefGoogle Scholar
  61. Kelly, S. D. (2001). Demonstrative concepts and experience. The Philosophical Review, 110(3), 397–420.CrossRefGoogle Scholar
  62. Kerkoerle, T. van., M. W., Dagnino, B., Gariel-Mathis M.-A., Poort, J., Togy, C. van der., & Roelfsema, P. R. (2014). Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proceedings of the National Academy of Science, USA (PNAS), 114(40), 14332–14341.Google Scholar
  63. Keysers, C., Xiao, D. K., Fldiak, P., & Perrett, D. (2014). The speed of sight. Journal of Cognitive Neuroscience, 13, 90–101.CrossRefGoogle Scholar
  64. Kirchner, H., & Thorpe, S. J. (2006). Ultra-rapid object detection with saccadic movements: Visual processing speed revisited. Vision Research, 46, 1762–1776.CrossRefGoogle Scholar
  65. Kok, P., Brouwer, G., van Gerven, M., & de Lange, F. (2013). Prior expectations bias sensory representations in visual cortex. Journal of Neuroscience, 33, 16275–16284.CrossRefGoogle Scholar
  66. Kok, P., Failing, M., & de Lange, F. (2014). Prior expectations evoke stimulus templates in the primary visual cortex. Journal of Cognitive Neuroscience, 26, 1546–1554.CrossRefGoogle Scholar
  67. Lamme, V. A. F. (2003). Why visual attention and awareness are different. Trends in Cognitive Sciences, 7(1), 12–18.CrossRefGoogle Scholar
  68. Lamme, V. A. F. (2005). Independent neural definitions of visual awareness and attention. In A. Raftopoulos (Ed.), The Cognitive Penetrability of Perception: An Interdisciplinary Approach. Hauppauge, NJ: NovaScience Books.Google Scholar
  69. Lamme, V. A. F., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neuroscience, 23, 571–579.CrossRefGoogle Scholar
  70. Lawrence, B. M., White, R. L., & Snyder, L. H. (2005). Delay-period activity in visual, visuomovement, and movement neurons in the front eye field. Journal of Neurophysiology, 94(2), 1498–1508.CrossRefGoogle Scholar
  71. Lee, J., & John, H. R., & Maunsell, J. H. R. (2009). A normalization model of attentional modulation of single responses. PLoS One, IV(2), e4651.CrossRefGoogle Scholar
  72. Ling, S., Liu, T., & Carrasco, M. (2009). How spatial and feature-based attention affect the gain and tuning of population responses. Vision Research, 49, 1194–1204.CrossRefGoogle Scholar
  73. Liu, T., Stevens, S. T., & Carrasco, M. (2007). Comparing the time course and efficacy of spatial and feature-based attention. Vision Research, 47, 108–113.CrossRefGoogle Scholar
  74. Liu, H., Agam, Y., Madsen, J., & Krelman, G. (2009). Timing, timing, timing: Fast decoding of object information from intracranial field potentials in human visual cortex. Neuron, 62, 281–290.CrossRefGoogle Scholar
  75. Luck, S. J. 1995. Multiple mechanisms of visual-spatial attention: Recent evidence from human electrophysiology. Behavioral and Brain Research, 71, 113–123.CrossRefGoogle Scholar
  76. Lupyan, G. (2015). Object knowledge changes visual appearance: Semantic effects on color afterimages. Acta Psychologica, 161, 117–130.CrossRefGoogle Scholar
  77. Marr, D. (1982). Vision: A Computational Investigation into Human Representation and Processing of Visual Information. San Francisco, CA: Freeman.Google Scholar
  78. Montemayor, C., & Haladjian, H. (2015). Consciousness, Attention, and Conscious Attention. Cambridge: MIT Press.CrossRefGoogle Scholar
  79. Morishima, Y., Akaishi, R., Yamada, Y., Okuda, J., Toma, K., & Sakai, K. (2008). Task-specific signal transmission from prefrontal cortex in visual selective attention. Nature Neuroscience, 12(1), 85–90.CrossRefGoogle Scholar
  80. Murray, S. O., Schrater, P., & Kersten, D. (2004). Perceptual grouping and the interactions between visual cortical areas. Neural Networks, 17, 695–705.CrossRefGoogle Scholar
  81. Newen, A., & Vetter, P. (2016). Why cognitive penetration of our perceptual experience is still the most plausible account. Consciousness and Cognition.
  82. Nobre, A. C., Rohenkhol, G., & Stokes, M. G. (2012). Nervous anticipation: Top-down biasing across space and time. In M. Posner (Ed.), Cognitive Neuroscience of Attention (2nd ed.). New York, NY: The Guilford Press.Google Scholar
  83. Ogilivie, R., & Carruthers, P. (2015). Opening up vision: The case against encapsulation. Review of Philosophy and Psychology.
  84. O’Shea, J., Muggleton, N. G., Cowey, A., & Walsh, V. (2004). Timing of target discrimination in human front eye fields. Journal of Cognitive Neuroscience, 16(6), 1060–1067.CrossRefGoogle Scholar
  85. Peacocke, C. (1998). Nonconceptual content defended. Philosophy and Phenomenological Research, 58(2), 381–388.CrossRefGoogle Scholar
  86. Peacocke, C. (2001). Does perception have a nonconceptual content? The Journal of Philosophy, XCVIII(5), 239–269.CrossRefGoogle Scholar
  87. Peterson, M. A., & Enns, J. (2005). The edge complex: Implicit memory for figure assignment in shape perception. Perception and Psychophysics, 67(4), 727–740.CrossRefGoogle Scholar
  88. Phillips, B. (2017). The shifting border between perception and cognition. Nous, 1–31.
  89. Plomp, G., Hervais-Adelma, A., Astofli, L., & Michel, C. M. (2015). Early recurrence and ongoing parietal driving during elementary visual processing. Nature, Scientific Reports, 5, 18733. Scholar
  90. Potter, M. C., Wyble, B., Hagmann, C. E., & McCourt, E. S. (2014). Detecting meaning in RSVP at 13 ms per picture. Attention, Perception, Psychophysics, 76, 270–279.CrossRefGoogle Scholar
  91. Pylyshyn, Z. (1999). Is vision continuous with cognition? Behavioral and Brain Sciences, 22, 341–365.Google Scholar
  92. Pylyshyn, Z. (2003). Seeing and Visualizing: It’s Not What You Think. Cambridge: MIT Press.CrossRefGoogle Scholar
  93. Pylyshyn, Z. (2007). Things and Places: How the Mind Connects with the World. Cambridge: MIT Press.CrossRefGoogle Scholar
  94. Raftopoulos, A. (2001a). Is perception informationally encapsulated? The issue of the theory-ladenness of perception. Cognitive Science, 25, 423–451.CrossRefGoogle Scholar
  95. Raftopoulos, A. (2001b). Reentrant pathways and the theory-ladenness of observation. Philosophy of Science, 68, 187–200.CrossRefGoogle Scholar
  96. Raftopoulos, A. (2009). Cognition and Perception: How Do Psychology and Neural Science Inform Philosophy? Cambridge: MIT Press.CrossRefGoogle Scholar
  97. Raftopoulos, A. (2014). The cognitive impenetrability of the content of early vision is a necessary and sufficient condition for purely nonconceptual content. Philosophical Psychology, 27(5), 601–620.CrossRefGoogle Scholar
  98. Raftopoulos, A. (2015). Cognitive penetrability and consciousness. In J. S. Zeimbekis & A. Raftopoulos (Eds.), Cognitive Effects on Perception: New Philosophical Perspectives (pp. 268–298). Oxford: Oxford University Press.CrossRefGoogle Scholar
  99. Raftopoulos, A., & Zeimbekis, J. (2015). The cognitive penetrability of perception: An overview. In J. Zeimbekis & A. Raftopoulos (Eds.), The Cognitive Penetrability of Perception: New Perspectives. Oxford: Oxford University Press.CrossRefGoogle Scholar
  100. Raftopoulos, A. (2017). Pre-cueing, the epistemic role of early vision and the cognitive impenetrability of early vision. Frontiers in Science, Psychology, 8, 1156. Scholar
  101. Reynolds, J. H., & Chelazzi, L. (2004). Attentional modulation of visual processing. Annual Review of Neuroscience, 27, 611–647.CrossRefGoogle Scholar
  102. Rock, I. (1983). The Logic of Perception. Cambridge: MIT Press.Google Scholar
  103. Roe, A. W., Chelazzi, L., Connor, C. E., Conway, B. R., Fujita, I., Gallant, J. L., et al. (2012). Toward a unified theory of visual areas V4. Neuron, 74, 12–29.CrossRefGoogle Scholar
  104. Roelfsema, P. R., Lamme, V. A. F., & Spekreijse, H. (1998). Object-based attention in the primary visual cortex of the macaque monkey. Nature, 395, 376–381.CrossRefGoogle Scholar
  105. Rosenholtz, R., Huang, J., Raj, A., Balas, B. J., & Ilie, L. (2012). A summary statistic representation in peripheral vision explains visual search. Journal of Vision, 12(4), 14.CrossRefGoogle Scholar
  106. Schall, J. D., & Bichot, N. P. (1998). Neural correlates of visual and motor decision processes. Current Opinions in Neurobiology, 76, 2841–2852.Google Scholar
  107. Searle, J. R. (1995). Consciousness, explanatory inversion and cognitive science. In C. MacDonald & G. Macdonald (Eds.), Philosophy of Psychology: Debates on Psychological Explanation. Oxford: Blackwell.Google Scholar
  108. Shibata, K., Yamagishi, N., Naokazu, G., Yoshioka, T., Yamashita, O., Sato, M., et al. (2008). The effects of feature attention on prestimulus cortical activity in the human visual system. Cerebral Cortex, 18, 1644–1675.CrossRefGoogle Scholar
  109. Silvanto, J., Lavie, N., & Walsh, V. (2006). Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex. Journal of Neurophysiology, 96(2), 941–945.CrossRefGoogle Scholar
  110. Silvanto, J., Cowey, A., Lavie, N., & Walsh, V. (2005). Striate cortex (V1) activity gates awareness of motion. Nature Neuroscience, 8(2), 143–144.CrossRefGoogle Scholar
  111. Spelke, E. S. (1988). Object perception. In A. I. Goldman (Ed.), Readings in Philosophy and Cognitive Science (pp. 447–461). Cambridge: MIT Press.Google Scholar
  112. Stich, S. (1978). Beliefs and subdoxastic states. Philosophy of Science, 45, 499–518.CrossRefGoogle Scholar
  113. Taylor, P. C. J., & Nobre, A. (2007). FEF TMS affects visual cortical activity. Cerebral Cortex, 17, 391–399.CrossRefGoogle Scholar
  114. Thompson, K. G., & Schall, J. D. (2000). Antecedents and correlates of visual detection and awareness in macaque prefrontal cortex. Vision Research, 40, 1523–1538.CrossRefGoogle Scholar
  115. Torralba, A., & Oliva, A. (2003). Statistics of natural image categories. Network, 14, 391–412.CrossRefGoogle Scholar
  116. Ullman, S., Vidal-Naquet, M., & Sali, E. (2002). Visual features of intermediate complexity and their use in classification. Nature Neuroscience, 5(7), 682–687.CrossRefGoogle Scholar
  117. Utochkin, I. S. (2015). Ensemble summary statistics as a basis for rapid visual categorization. Journal of Vision, 15(4), 1–14.CrossRefGoogle Scholar
  118. Vandenbroucke, A. R. F., Fahrenfort, J. J., Sligte, I. G., & Lamme, V. A. F. (2014). Seeing without knowing: Neural signatures of perceptual inference in the absence of report. Journal of Cognitive Neuroscience, 26(5), 955–969.CrossRefGoogle Scholar
  119. Vetter, P., & Newen, A. (2014). Varieties of cognitive penetration in visual perception. Consciousness and Cognition, 27, 62–75.CrossRefGoogle Scholar
  120. Wang, P., & Cottrell, G. W. (2017). Central and peripheral vision for scene recognition: A neurocomputational modeling exploration. Journal of Vision, 17(4), 1–22.CrossRefGoogle Scholar
  121. Wilson, H. R., & Wilkinson, F. (2015). From orientations to objects: Configural processing in the ventral system. Journal of Vision, 15(7:4), 1–10.CrossRefGoogle Scholar
  122. Wokke, M., Sligte, I. G., Scholte, H. S., & Lamme, V. A. F. (2012). Two critical periods in early visual cortex during figure-ground segregation. Brain and Behavior, 2(6), 763–777.CrossRefGoogle Scholar
  123. Wyart, V., Nobre, A., & Summerfield, C. (2012). Dissociable prior influences of signal probability and relevance on visual contrast sensitivity. Proceedings of the National Academy of Sciences, 109, 3593–3598.CrossRefGoogle Scholar
  124. Zhou, H. H., & Thompson, K. G. (2009). Cognitively directed spatial attention in the frontal eye field in anticipation of visual stimuli to be discriminated. Vision Research, 49, 1205–1215.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of CyprusNicosiaCyprus

Personalised recommendations