Advertisement

Stress Fractures

  • Timothy L. MillerEmail author
  • Christopher C. Kaeding
Chapter

Abstract

Stress fractures are fatigue fractures of bone and result from an overuse mechanism. These injuries present most commonly in the legs are feet of long-distance runners and military personnel but can also in the upper extremity and the spine depending on the causative activity. A myriad of nutritional, hormonal, and biomechanical factors contribute to the development of bony stress injuries, and no two stress fractures behave exactly alike. A detailed history, thorough physical examination, and proper imaging are required for diagnosing and classifying these injuries. Treatment of these injuries requires nutritional and emotional support, rest from the causative activity, and at times surgical fixation. Recently developed biological treatment options may help to stabilize these injuries and stimulate more rapid healing.

Keywords

Bone Fatigue fracture High risk Low risk March fracture Overuse injury Runners Stress fracture Stress injury Stress reaction 

References

  1. 1.
    Kaeding CC, Miller TL. The comprehensive description of stress fractures: a new classification system. J Bone Joint Surg. 2013;95(13):1214–20.PubMedGoogle Scholar
  2. 2.
    Kaeding CC, Yu JR, Wright R, et al. Management and return to play of stress fractures. Clin J Sport Med. 2005;15(6):442–7.Google Scholar
  3. 3.
    Kaeding CC, Spindler KP, Amendola A. Management of troublesome stress fractures. Am Acad Orthop Surg Instr Course Lect. 2004;53:455–69.Google Scholar
  4. 4.
    Kaeding CC, Najarian R. Stress fractures—classification and management. Phys SportsMED. 2010;38(3):45–54.PubMedGoogle Scholar
  5. 5.
    Boden BP, Osbahr DC, Jimenez C. Low-risk stress fractures. Am J Sports Med. 2001;29(1):100–11.PubMedGoogle Scholar
  6. 6.
    Boden BP. High-risk stress fractures: evaluation and treatment. J Am Acad Orthop Surg. 2000;8:344–53.PubMedGoogle Scholar
  7. 7.
    McInnis KC, Ramey LN. High-risk stress fractures: diagnosis and management. PMR. 2016;8(3 Suppl):S113–24.Google Scholar
  8. 8.
    Lappe J, Cullen D, Haynatzki G, Recker R, Ahlf R, Thompson K. Calcium and vitamin D supplementation decreases incidence of stress fractures in female navy recruits. J Bone Miner Res. 2008;23(5):741–9.PubMedGoogle Scholar
  9. 9.
    Pouilles JM, Bernard J, Tremollières F, Louvet JP, Ribot C. Femoral bone density in young male adults with stress fractures. J Bone. 1989;10:105–8.Google Scholar
  10. 10.
    Rettig AC, Shelbourne KD, McCarroll JR, Bisesi M, Watts J. The natural history and treatment of delayed union stress fractures of the anterior cortex of the tibia. Am J Sports Med. 1988;16(3):250–5.PubMedGoogle Scholar
  11. 11.
    Brukner P, Bennell K, Matheson G. Stress fractures of the trunk. In: Brukner P, editor. Stress fractures. Victoria: Blackwell Science; 1999. p. 119–38.Google Scholar
  12. 12.
    Tenforde AS, Carlson JL, Chang A, Sainani KL, Shultz R, Kim JH, Cutti P, Golden NH, Fredericson M. Association of the female athlete triad risk assessment stratification to the development of bone stress injuries in collegiate athletes. Am J Sports Med. 2017;45(2):302–10.PubMedGoogle Scholar
  13. 13.
    Eller DJ, Katz DS, Bergman AG, et al. Sacral stress fractures in long-distance runners. Clin J Sport Med. 1997;7:222–5.PubMedGoogle Scholar
  14. 14.
    Jones BH, Harris JM, Vinh TN, Rubin C. Exercise-induced stress fractures and stress reactions of bone: epidemiology, etiology, and classification. Exerc Sport Sci Rev. 1989;17:379–422.PubMedGoogle Scholar
  15. 15.
    Jamieson M, Everson S, Siegel C, Miller TL. Expected time to return to athletic participation following stress fracture in division I collegiate athletes. Sport Health. 2018;10(4):340–4.Google Scholar
  16. 16.
    Jamieson M, Schroeder A, Day J, et al. Time to return to running after tibial stress fracture in female division I collegiate track and field. Currt Orthop Pract. 2017;31(4):393–7.Google Scholar
  17. 17.
    Hosey RG, Fernandez MM, Johnson DL. Evaluation and management of stress fractures of the pelvis and sacrum. Orthopedics. 2008;31(4):383–5.PubMedGoogle Scholar
  18. 18.
    Krauss MR, Garvin NU, Boivin MR, Cowan DN. Excess stress fractures, musculoskeletal injuries, and health care utilization among unfit and overweight female army trainees. Am J Sports Med. 2017;45(2):311–6.PubMedGoogle Scholar
  19. 19.
    Miller TL, Harris JD, Kaeding CC. Stress fractures of the ribs and upper extremities: causation, evaluation, and management. Sports Med. 2013;43(8):665–74.PubMedGoogle Scholar
  20. 20.
    Bennell K, Brukner P. Epidemiology and site specificity of stress fractures. Clin Sports Med. 1997;16:179–96.PubMedGoogle Scholar
  21. 21.
    Miller TL, Best TM. Taking a holistic approach to managing difficult stress fractures. J Orthop Surg Res. 2016;11(1):98.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Toney CM, Games KE, Winkelmann ZK, Eberman LE. Using tuning-fork tests in diagnosing fractures. J Athl Train. 2016;51(6):498–9.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Coughlin MJ, Grimes JS, Traughber PD, Jones CP. Comparison of radiographs and CT scans in the prospective evaluation of the fusion of hindfoot arthrodesis. Foot Ankle Int. 2006;27(10):780–7.PubMedGoogle Scholar
  24. 24.
    Wall J, Feller JF. Imaging of stress fractures in runners. Clin Sports Med. 2006;25(4):781–802.PubMedGoogle Scholar
  25. 25.
    Brukner P, Bradshaw C, Khan KM, White S, Crossley K. Stress fractures: a review of 180 cases. Clin J Sport Med. 1996;6(2):85–9.PubMedGoogle Scholar
  26. 26.
    Dobrindt O, Hoffmeyer B, Ruf J, Seidensticker M, Steffen IG, Zarva A, Fischbach F, Wieners G, Furth C, Lohmann CH, et al. MRI versus bone scintigraphy. Evaluation for diagnosis and grading of stress injuries. Nuklearmedizin. 2012;51(3):88–94.PubMedGoogle Scholar
  27. 27.
    Dutton J. Clinical value of grading the scintigraphic appearances of tibial stress fractures in military recruits. Clin Nucl Med. 2002;27(1):18–21.PubMedGoogle Scholar
  28. 28.
    Gaeta M, Minutoli F, Vinci S, Salamone I, D’Andrea L, Bitto L, Magaudda L, Blandino A. High-resolution CT grading of tibial stress reactions in distance runners. Am J Roentgenol. 2006;187:789–93.Google Scholar
  29. 29.
    Bradshaw C, Khan K, Brukner P. Stress fracture of the body of the talus in athletes demonstrated with computer tomography. Clin J Sport Med. 1996;6:48–51.PubMedGoogle Scholar
  30. 30.
    Standaert CJ. Spondylolysis in the adolescent athlete. Clin J Sport Med. 2002;12(2):119–22.PubMedGoogle Scholar
  31. 31.
    Arendt EA, Griffiths HJ. The use of MR imaging in the assessment and clinical management of stress reactions of bone in high-performance athletes. Clin Sports Med. 1997;16:291–306.PubMedGoogle Scholar
  32. 32.
    Miller T, Kaeding CC, Flanigan D. The classification systems of stress fractures: a systematic review. Phys Sportsmed. 2011;39(1):93–100.PubMedGoogle Scholar
  33. 33.
    Cabarrus MC, Ambekar A, Lu Y, Link TM. MRI and CT of insufficiency fractures of the pelvis and the proximal femur. AJR Am J Roentgenol. 2008;191(4):995–1001.PubMedGoogle Scholar
  34. 34.
    Jensen J. Stress fracture in the world class athlete: a case study. Med Sci Sports Exerc. 1998;30:783–7.PubMedGoogle Scholar
  35. 35.
    Longhino V, Bonora C, Sansone V. The management of sacral stress fractures: current concepts. Clin Cases Miner Bone Metab. 2011;8(3):19–23.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Massar L, Caruso G, Sollazzo V, Setti S. Pulsed electromagnetic fields and low intensity pulsed ultrasound in bone tissue. Clin Cases Miner Bone Metab. 2009;6(2):149–54.Google Scholar
  37. 37.
    Aspenberg P, Johansson T. Teriparatide improves early callus formation in distal radial fractures. Acta Orthop. 2010;81(2):234–6.PubMedPubMedCentralGoogle Scholar
  38. 38.
    O’Loughlin PF, Cunningham ME, Bukata SV, et al. Parathyroid hormone (1-34) augments spinal fusion, fusion mass volume, and fusion mass quality in a rabbit spinal fusion model. Spine. 2009;34(2):121–30.PubMedGoogle Scholar
  39. 39.
    Cohen SB, Sharkey PF. Subchondroplasty for the treating bone marrow lesions. J Knee Surg. 2016;29(7):555–63.PubMedGoogle Scholar
  40. 40.
    Bonadio MB, Giglio PN, Helito CP, et al. Subchondroplasty for treating bone marrow lesions in the knee—initial experience. Rev Bras Ortop. 2017;52(3):325–30.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Hyer CF, Berlet GC, Bussewitz BW, Hankins T, Ziegler HL, Philbin TM. Quantitative assessment of the yield of osteoblastic connective tissue progenitors in bone marrow aspirate from the iliac crest, tibia, and calcaneus. J Bone Joint Surg Am. 2013;95(14):1312–6.PubMedGoogle Scholar
  42. 42.
    Murawski CD, Kennedy JG. Percutaneous internal fixation of proximal fifth metatarsal jones fractures (zones II and III) with Charlotte Carolina screw and bone marrow aspirate concentrate: an outcome study in athletes. Am J Sports Med. 2011;39(6):1295–301.PubMedGoogle Scholar
  43. 43.
    Lee DH, Ryu KJ, Kim JW, Kang KC, Choi YR. Bone marrow aspirate concentrate and platelet-rich plasma enhanced bone healing in distraction osteogenesis of the tibia. Clin Orthop Relat Res. 2014;472(12):3789–97.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Jäger M, Jelinek EM, Wess KM, Scharfstädt A, Jacobson M, Kevy SV, Krauspe R. Bone marrow concentrate: a novel strategy for bone defect treatment. Curr Stem Cell Res Ther. 2009;4(1):34–43.PubMedGoogle Scholar

Copyright information

© ISAKOS 2019

Authors and Affiliations

  1. 1.Orthopaedic Surgery and Sports MedicineThe Ohio State University Wexner Medical Center, Jameson Crane Sports Medicine InstituteColumbusUSA
  2. 2.Ohio State University Athletics, The Ohio State University Wexner Medical Center Endurance Medicine TeamColumbusUSA
  3. 3.Department of OrthopaedicsThe Ohio State University Wexner Medical Center Sports Medicine, Jameson Crane Sports Medicine InstituteColumbusUSA
  4. 4.Department of AthleticsThe Ohio State UniversityColumbusUSA

Personalised recommendations