Rare Earth Elements—Separation Methods Yesterday and Today

  • Dorota KołodyńskaEmail author
  • Dominika Fila
  • Bernadeta Gajda
  • Jerzy Gęga
  • Zbigniew Hubicki


Rare earth elements (REEs) belong to the group of strategic elements. Their separation together with the spectral, magnetic and coordinative properties of REEs is essential for their further applications. However, separation of individual REEs on an industrial scale is very complex. Obtaining REEs of high purity requires purification of their concentrates. This is usually achieved by precipitation of REEs such as double sulphates NaLn(SO4)2 or oxalates Ln2(C2O4)3 as well as extraction and/or ion exchange method application. Currently, the recovery of rare earth metals from secondary sources is also very important. The details connected with the rare earth element recovery from nickel–metal hydride batteries and permanent magnets as well as their separation will be described in the paper.


Lanthanides Complexes Aminopolycarboxylic acids 


  1. 1.
    Gueroult R, Rax JM, Fisch NJ (2018) Opportunities for plasma separation techniques in rare earth elements recycling. J Clean Prod 182:1060–1069CrossRefGoogle Scholar
  2. 2.
    Klinger JM (2018) Rare earth elements: Development, sustainability and policy issues. Extr Ind Soc 5:1–7Google Scholar
  3. 3.
    Chakhmouradian AR, Wall F (2012) Rare earth elements: Minerals, mines, magnets (and more). Elements 8:333–340CrossRefGoogle Scholar
  4. 4.
    Brown TJ, Shaw RA, Bide T, Petavratzi E, Raycraft ER, Walters AS (2013) World mineral production 2007–2011, British Geological SurveyGoogle Scholar
  5. 5.
    Anielak AM (2000) Chemiczne i fizykochemiczne oczyszczanie ścieków. Wydawnictwo Naukowe PWN Warszawa (in Polish)Google Scholar
  6. 6.
    Binnemans K, Jones PT, Blanpain B, Van Gerven T, Yang Y, Walton A, Buchert M (2013) Recycling of rare earths: A critical review. J Clean Prod 51:1–22CrossRefGoogle Scholar
  7. 7.
    Innocenzi V, De Michelis I, Ferella F, Veglio F (2016) Rare earths from secondary sources: profitability study. Adv Environ Res 5:125–140CrossRefGoogle Scholar
  8. 8.
    Jha MK, Kumari A, Panda R, Rajesh Kumar J, Yoo K, Lee JY (2016) Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy 165:2–26CrossRefGoogle Scholar
  9. 9.
    Kanazawa Y, Kamitani M (2006) Rare earth minerals and resources in the world. J Alloys Compd 408–412:1339–1343CrossRefGoogle Scholar
  10. 10.
    Castor SB, Hedrick JB (2006) Rare Earth Elements. Soc Mining, Metall Explor 769–792Google Scholar
  11. 11.
    Aide MT, Aide C (2012) Rare earth elements: their importance in understanding Soil Genesis. ISRN Soil Sci 12:1–11CrossRefGoogle Scholar
  12. 12.
    Charalampides G, Vatalis KI, Apostoplos B, Ploutarch-Nikolas B (2015) Rare Earth Elements: Industrial Applications and Economic Dependency of Europe. Procedia Econ Financ 24:126–135CrossRefGoogle Scholar
  13. 13.
    Porowski A, Kaczor-Kurzawa D (2016) Pierwiastki ziem rzadkich (REE) w wodach termalnych: występowanie, pochodzenie, znaczenie i perspektywy badań w Polsce. Tech Poszuk Geol Geoterm Zrównoważony Rozw 1:89–102 (in Polish)Google Scholar
  14. 14.
    Dutta T, Kim KH, Uchimiya M, Eilhann EK, Jeon BH, Deep A, Yun ST (2016) Global demand for rare earth resources and strategies for green mining. Environ Res 150:182–190CrossRefGoogle Scholar
  15. 15.
    Humphries M (2013) Rare Earth Elements: The Global Supply Chain. Congr Res Serv 27Google Scholar
  16. 16.
    Rydel P, Nowak M (2015) Review of the major minerals of rare earth elements—gold of the 21st century. Przegląd Geol 63:348–362Google Scholar
  17. 17.
    Jeżowska-Trzebiatowska B, Kopacz S, Mikulski T (1976) Pierwiastki rzadkie część I Występowanie i technologia. Państwowe Wydawnictwo Naukowe, WarszawaGoogle Scholar
  18. 18.
    Haxel GB, Hedrick JB, Orris GJ (2002) Rare earth elements—critical resources for high technology. United States Geol Surv Fact Sheet 87:4Google Scholar
  19. 19.
    Charewicz W (1990) Pierwiastki ziem rzadkich: surowce, technologie, zastosowania: opracowanie zbiorowe. Wydawnictwa Naukowo-Techniczne, Warszawa (in Polish)Google Scholar
  20. 20.
    Kabata-Pendias A, Mukherjee AB (2007) Trace elements from Soil to Human. Springer, BerlinCrossRefGoogle Scholar
  21. 21.
    Henderson P (1984) General geochemical properties and abundances of the rare earth elements. Rare Earth Element Geochemistry. Elsevier, London, pp 1–32Google Scholar
  22. 22.
    Goering PL, Fisher BR, Fowler BA (1991) The Lanthanides. In: Metals and their compounds in the environment: occurrence, analysis, and biological relevance. pp 959–970Google Scholar
  23. 23.
    Jarosinski A (2016) Możliwości pozyskiwania metali ziem rzadkich w Polsce. Zesz Nauk Inst Gospod Surowcami Miner i Energią Pol Akad Nauk 75–88Google Scholar
  24. 24.
    Davris P, Balomenos E, Taxiarchou M, Panias D, Paspaliaris I (2017) Current and Alternative Routes in the Production of Rare Earth Elements. BHM Bergund Hüttenmännische Monatshefte 162:245–251CrossRefGoogle Scholar
  25. 25.
    Deng M, Xu C, Song W, Tang H, Liu Y, Zhang Q, Zhou Y, Feng M, Wei C (2017) REE mineralization in the Bayan Obo deposit, China: Evidence from mineral paragenesis. Ore Geol Rev 91:100–109CrossRefGoogle Scholar
  26. 26.
    Alonso W, Sherman E, Wallington AM, Everson TJ, Field MP, Roth FF, Kirchain RE (2012) Evaluating Rare Earth Element Availability: A Case with Revolutionary Demand from Clean Technologies. Environ Sci Technol 46:3406–3414CrossRefGoogle Scholar
  27. 27.
    Alonso E, Sherman AM, Wallington TJ, Everson MP, Field FR, Roth R, Kirchain RE (2012) Evaluating rare earth element availability: A case with revolutionary demand from clean technologies. Environ Sci Technol 46:3406–3414CrossRefGoogle Scholar
  28. 28.
    Klinger JM (2015) A historical geography of rare earth elements: From discovery to the atomic age. Extr Ind Soc 2:572–580Google Scholar
  29. 29.
    Bielański A (2002) Podstawy chemii nieorganicznej. Wydawnictwo Naukowe PWN, Warszawa (in Polish)Google Scholar
  30. 30.
    Cotton S (2006) Lanthanide and Actinide Chemistry. ChichesterGoogle Scholar
  31. 31.
    Huang C (2010) Rare Earth Coordination Chemistry Fundamentals and Applications. John Wiley & Sons, AsiaCrossRefGoogle Scholar
  32. 32.
    Cotton SA, Raithby PR (2017) Systematics and surprises in lanthanide coordination chemistry. Coord Chem Rev 340:220–231CrossRefGoogle Scholar
  33. 33.
    Kołodyńska D, Hubicki Z (2012) Investigation of sorption and separation of the lanthanides on the ion exchangers of various types. In: Ion Exchange Technologies A. Kilislioglu (ed) ISBN 980-953-307-139-3, str. 101-154,
  34. 34.
    Massari S, Ruberti M (2013) Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resour Policy 38:36–43CrossRefGoogle Scholar
  35. 35.
    Akah A (2017) Application of rare earths in fluid catalytic cracking: A review. J Rare Earths 35:941–956CrossRefGoogle Scholar
  36. 36.
    Gschneidner KA (2009) The rare earth crisis -the supply demand. Situation for 2010–2015. Mater Matters 6Google Scholar
  37. 37.
    Zhou B, Li Z, Chen C (2017) Global potential of rare earth resources and rare earth demand from clean technologies. Minerals 7:1–14Google Scholar
  38. 38.
    Gonzalez V, Vignati DAL, Leyval C, Giamberini L (2014) Environmental fate and ecotoxicity of lanthanides: Are they a uniform group beyond chemistry? Environ Int 71:148–157CrossRefGoogle Scholar
  39. 39.
    Gambogi J (2015) U.S. Geological Survey, Mineral Commodity SummariesGoogle Scholar
  40. 40.
    Gambogi J (2017) U.S. Geological Survey, Mineral Commodity SummariesGoogle Scholar
  41. 41.
    Bütikofer R (2015) Erecon: Strengthening the European rare earth supply-chain, Challenges and policy optionsGoogle Scholar
  42. 42.
    Sozański A (1981) Industrial methods for separation of thorium from rare earth elements. Prace Naukowe Instytutu Chemii Nieorganicznej i Pierwiastków Rzadkich Politechniki Wrocławskiej, WrocławGoogle Scholar
  43. 43.
    Leveque A (2014) Extraction and separation of Rare Earths, EREAN Summer School Leuven University, 19 August 2014Google Scholar
  44. 44.
    Schüler D, Buchert M, Liu R, Dittrichn S, Merz C (2011), Study on Rare Earths and Their Recycling, Final Report for The Greens/EFA Group in the European ParliamentGoogle Scholar
  45. 45.
    Umicore (2014) Rechargeable Batteries (storing energy). Retrieved from Accessed 20 Apr 2018
  46. 46.
    Saubermacher (2014) Leistungen: Entsorgungslösungen. Retrieved from Accessed 24 Apr 2018
  47. 47.
    Müller T, Friedrich B (2006) Development of a recycling process for nickel-metal hydride batteries. J Power Sources 158:1498–1509CrossRefGoogle Scholar
  48. 48.
    Lyman JW, Palmer GR (1995) Hydrometallurgical treatment of nickel-metal hydride battery electrodes. In: In Third International Symposium on Recycling of Metals and Engineered Materials. November 12–15. Point Clear, Alabama (USA) 131–144Google Scholar
  49. 49.
    Yoshida T, Ono H, Shirai R (1995) Recycling of used Ni-MH rechargeable batteries. Miner Met Mater Soc 145–152Google Scholar
  50. 50.
    Zhang P, Yokoyama T, Itabashi O, Wakui Y, Suzuki TM, Inoue K (1998) Hydrometallurgical process for recovery of metal values from spent nickel-metal hydride secondary batteries. J Power Sources 50:61–75Google Scholar
  51. 51.
    Zhang P, Yokoyama T, Itabashi O, Wakui Y, Suzuki TM, Inoue K (1999) Recovery of metal values from spent nickel-metal hydride rechargeable batteries. J Power Sources 77:116–122CrossRefGoogle Scholar
  52. 52.
    Li L, Xu S, Ju Z, Wu F (2009) Recovery of Ni, Co and rare earths from spent Ni-metal hydride batteries and preparation of spherical Ni(OH)2. Hydrometallurgy 100:41–46CrossRefGoogle Scholar
  53. 53.
    Gasser MS, Aly MI (2013) Separation and recovery of rare earth elements from spent nickel-metal-hydride batteries using synthetic adsorbent. Int J Miner Process 121:31–38CrossRefGoogle Scholar
  54. 54.
    Kanamori T, Matsuda M, Miyake M (2009) Recovery of rare metal compounds from nickel-metal hydride battery waste and their application to CH4 dry reforming catalyst. J Hazard Mater 169:240–245CrossRefGoogle Scholar
  55. 55.
    Provazi K, Campos BA, Espinosa DCR, Tenório JAS (2011) Metal separation from mixed types of batteries using selective precipitation and liquid-liquid extraction techniques. Waste Manag 31:59–64CrossRefGoogle Scholar
  56. 56.
    Larsson K, Ekberg C, Odegaard-Jensen A (2011) Metal separation after selective dissolution of nickel metal hydride batteries. 19th International Solvent Extraction Conference (ISEC2011), 3-7 October 2011. Santiago, Chili, pp 38–45Google Scholar
  57. 57.
    Becker K, Chmielarz A, Szołomicki Z, Gotfryd L, Piwowońska J, Pietek G, Pokora M (2016) Hydrometalurgiczny recykling akumulatorów Ni-MH i Li-ion. Rudy i Met Nieżelazne Recykling 61(6):235–243 (in Polish)Google Scholar
  58. 58.
    Coey JMD (2012) Permanent magnets: Plugging the gap. Scr Mater 67:524–529. Scholar
  59. 59.
    Hubicka H, Drobek D (2000) Studies on separation of intermediate and heavy lanthanide complexes with iminodiacetic acid on anion-exchangers. Chem Environ Res 9:245–257Google Scholar
  60. 60.
    Hubicka H, Kołodyńska D (2000) Study on separation of lanthanum from praseodymium complexes with IMDA by gel and macroporous anion-exchangers. J Rare Earths 18:90–96Google Scholar
  61. 61.
    Hubicka H, Kołodyńska D (2004) Separation of rare earth element complexes with trans-1,2-diaminocyclohexane-N, N, N’, N’-tetraacetic acid on the polyacrylate anion-exchangers. Hydrometallurgy 71:343–350CrossRefGoogle Scholar
  62. 62.
    Hubicka H, Kołodyńska D (2005) Effects of polar organic solvent on the separation of the Y(edta)-/Nd(edta)- complexes on polyacrylic anion exchangers. J Rare Earths 23:124–128Google Scholar
  63. 63.
    Hubicka H, Kołodyńska D (2008) Application of monodisperse anion exchangers in sorption and separation of Y3+ from Nd3+ complexes with DCTA. J Rare Earths 26:619–625CrossRefGoogle Scholar
  64. 64.
    Kołodyńska D, Hubicka H, Hubicki Z (2008) Sorption of heavy metal ions from aqueous solutions in the presence of EDTA on monodisperse anion exchangers. Desalination 227:150–166CrossRefGoogle Scholar
  65. 65.
    Hubicka H, Kołodyńska D (2004) Studies of applicability of strongly and weakly basic polystyrene and polyacrylate anion exchangers for separation of Y(edta)- from Sm(edta)- complexes. Chem Environ Res 13:73–85Google Scholar
  66. 66.
    Hubicka H, Kołodyńska D (2004) Separation of rare-earth element complexes with trans-1,2-diaminocyclohexane-N, N, N′, N′-tetraacetic acid on polyacrylate anion exchangers. Hydrometallurgy 71:343–350CrossRefGoogle Scholar
  67. 67.
    Hubicki Z (1990) Studies on selective separation of Sc(III) from rare earth elements on selective ion exchangers. Hydrometallurgy 23:319–331CrossRefGoogle Scholar
  68. 68.
    Hubicka H, Hubicki Z (1992) Studies on separation of pair Y(III)-Nd(III) on chelating ion exchangers of aminoacid type using aminopolyacetic acids as eluents. Hung J Ind Chem 20:249–254Google Scholar
  69. 69.
    Wang YG, Xiong Y, Meng SL, Li DQ (2004) Separation of yttrium from heavy lanthanide by CA-100 using the complexing agent. Talanta 63:239–243CrossRefGoogle Scholar
  70. 70.
    Izatt SR, McKenzie JS, Izatt NE, Bruening RL, Krakowiak KE, Izatt RM (2016) Molecular recognition technology: a green chemistry. Process for separation of individual rare earth metals, White Pap Sep Rare Earth ElemGoogle Scholar
  71. 71.
    Dong Y, Sun X, Wang Y, Chai Y (2015) The development of an extraction strategy based on EHEHP-type functional ionic liquid for heavy rare earth element separation. Hydrometallurgy 157:256–260CrossRefGoogle Scholar
  72. 72.
    Quinn JE, Soldenhoff KH, Stevens GW (2017) Solvent extraction of rare earths using a bifunctional ionic liquid. Part 1: Interaction with acidic solutions. Hydrometallurgy 169:306–313CrossRefGoogle Scholar
  73. 73.
    Quinna JE, Soldenhoff KH, Stevens GW (2017) Solvent extraction of rare earth elements using a bifunctional ionic liquid. Part 2: Separation of rare earth elements. Hydroamtealrgy 169:621–629CrossRefGoogle Scholar
  74. 74.
    Wang W, Yang HL, Cui HM, Zhang DL, Liu Y, Chen J (2011) Application of bifunctionalionic liquid extractants [A336][CA-12] and [A336][CA-100] to the lanthanum extraction and separation from rare earths in the chloride medium. Ind Eng Chem Res 50:7534–7541CrossRefGoogle Scholar
  75. 75.
    Rout A, Kotlarska J, Dehaen W, Binnemans K (2013) Liquid–liquid extraction of neodymium(III) by dialkylphosphate ionic liquids from acidic medium: the importance of the ionic liquid cation. Phys Chem Chem Phys 15:16533–16541CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dorota Kołodyńska
    • 1
    Email author
  • Dominika Fila
    • 1
  • Bernadeta Gajda
    • 2
  • Jerzy Gęga
    • 3
  • Zbigniew Hubicki
    • 1
  1. 1.Department of Inorganic Chemistry, Faculty of ChemistryMaria Curie-Sklodowska UniversityLublinPoland
  2. 2.Department of Metals Extraction and Recycling, Faculty of Production Engineering and Materials TechnologyCzestochowa University of TechnologyCzęstochowaPoland
  3. 3.Department of Chemistry, Faculty of Production Engineering and Materials TechnologyCzestochowa University of TechnologyCzęstochowaPoland

Personalised recommendations