Biosorbents and Composite Cation Exchanger for the Treatment of Heavy Metals

  • Muhammad Shahid Nazir
  • Zaman Tahir
  • Majid Niaz Akhtar
  • Mohd Azmuddin AbdullahEmail author


Heavy metals have seriously affected the quality of water, soil, and marine ecosystems. More economical, efficient and effective water purification and desalination methods need to be developed to remove persistent heavy metal ion contamination, especially in drinking water. Among low-cost methods with different degree of effectiveness for heavy metal ion removal highlighted in this chapter are the agro-based biosorbents and biopolymers based on cellulose, chitosan, and alginate. Factors influencing the efficiency of nanofiber membranes and packed-bed adsorbers have been addressed. Different types of composite ion exchangers are discussed.


  1. 1.
    Inglehart R, Norris, P (2003) Rising tide: gender equality and cultural change around the world. Cambridge University PressGoogle Scholar
  2. 2.
    Grimm NB et al (2008) Global change and the ecology of cities. Science 319(5864):756–760CrossRefGoogle Scholar
  3. 3.
    Organization WH (1992) WHO commission on health and environment: report of the panel on industryGoogle Scholar
  4. 4.
    Flower SRL (2015) Environmental pollution-especially air pollution-and public healthGoogle Scholar
  5. 5.
    Förstner U, Wittmann GT (2012) Metal pollution in the aquatic environment. Springer Science & Business MediaGoogle Scholar
  6. 6.
    Mushak P (2007) Hormesis and its place in nonmonotonic dose–response relationships: some scientific reality checks. Environ Health Perspect 115(4):500CrossRefGoogle Scholar
  7. 7.
    Mishra MK (2013) A study of intermetallics in Cu–Sn system and development of Sn–Zn based lead free soldersGoogle Scholar
  8. 8.
    Matte TD, Landrigan PJ, Baker EL (1992) Occupational lead exposure. Hum Lead Exposure 155–168Google Scholar
  9. 9.
    Choudhary R et al (2016) Equipment-free, single-step, rapid, “on-site” kit for visual detection of lead ions in soil, water, bacteria, live cells, and solid fruits using fluorescent cube-shaped nitrogen-doped carbon dots. ACS Sustain Chem Eng 4(10):5606–5617CrossRefGoogle Scholar
  10. 10.
    Mudgal V et al (2010) Effect of toxic metals on human health. Open Nutr J 3(1):94–99Google Scholar
  11. 11.
    Harikumar P et al (2011) Study on the leaching of mercury from compact fluorescent lamps using stripping voltammetry. J Toxicol Environ Health Sci 3(1):008–013Google Scholar
  12. 12.
    Lokeshappa B et al (2012) Assessment of toxic metals in agricultural produce. Food Public Health 2(1):24–29CrossRefGoogle Scholar
  13. 13.
    Pais I, Jones JB Jr (1997) The handbook of trace elements. CRC PressGoogle Scholar
  14. 14.
    Soetan K, Olaiya C, Oyewole O (2010) The importance of mineral elements for humans, domestic animals and plants—a review. Afr J Food Sci 4(5):200–222Google Scholar
  15. 15.
    Underwood E (2012) Trace elements in human and animal nutrition: ElsevierGoogle Scholar
  16. 16.
    Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418CrossRefGoogle Scholar
  17. 17.
    Ngah WW, Hanafiah M (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Biores Technol 99(10):3935–3948CrossRefGoogle Scholar
  18. 18.
    Barakat M (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377CrossRefGoogle Scholar
  19. 19.
    Daneshfozoun S, Abdullah M, Abdullah B (2017) Preparation and characterization of magnetic biosorbent based on oil palm empty fruit bunch fibers, cellulose and Ceiba pentandra for heavy metal ions removal. Ind Crops Prod 105:93–103CrossRefGoogle Scholar
  20. 20.
    Omri A, Benzina M (2012) Removal of manganese (II) ions from aqueous solutions by adsorption on activated carbon derived a new precursor: ziziphus spina-christi seeds. Alexandria Eng J 51(4):343–350CrossRefGoogle Scholar
  21. 21.
    Omorogie M (2014) Adsorption of some toxic metal ions onto west african boxwood (naucleadiderrichii, merrill) seed epicarp doped with nanoparticlesGoogle Scholar
  22. 22.
    Mondal DK, Nandi BK, Purkait M (2013) Removal of mercury (II) from aqueous solution using bamboo leaf powder: equilibrium, thermodynamic and kinetic studies. J Environ Chem Eng 1(4):891–898CrossRefGoogle Scholar
  23. 23.
    Reddy DHK et al (2012) Optimization of Cd(II), Cu(II) and Ni(II) biosorption by chemically modified Moringa oleifera leaves powder. Carbohyd Polym 88(3):1077–1086CrossRefGoogle Scholar
  24. 24.
    Li X et al (2013) Adsorption, concentration, and recovery of aqueous heavy metal ions with the root powder of Eichhornia crassipes. Ecol Eng 60:160–166CrossRefGoogle Scholar
  25. 25.
    Munagapati VS et al (2010) Biosorption of Cu(II), Cd(II) and Pb(II) by acacia leucocephala bark powder: kinetics, equilibrium and thermodynamics. Chem Eng J 157(2–3):357–365CrossRefGoogle Scholar
  26. 26.
    Reddy DHK et al (2011) Biosorption of Ni(II) from aqueous phase by Moringa oleifera bark, a low cost biosorbent. Desalination 268(1–3):150–157CrossRefGoogle Scholar
  27. 27.
    Sarin V, Pant KK (2006) Removal of chromium from industrial waste by using eucalyptus bark. Biores Technol 97(1):15–20CrossRefGoogle Scholar
  28. 28.
    Feng N et al (2011) Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. J Hazard Mater 185(1):49–54CrossRefGoogle Scholar
  29. 29.
    Saha R et al (2013) Removal of hexavalent chromium from water by adsorption on mosambi (Citrus limetta) peel. Res Chem Intermed 39(5):2245–2257CrossRefGoogle Scholar
  30. 30.
    Bhattacharya P et al (2013) Potential of biosorbent developed from fruit peel of Trewia nudiflora for removal of hexavalent chromium from synthetic and industrial effluent: Analyzing phytotoxicity in germinating Vigna seeds. J Environ Sci Health Part A 48(7):706–719CrossRefGoogle Scholar
  31. 31.
    Iqbal M, Saeed A, Kalim I (2009) Characterization of adsorptive capacity and investigation of mechanism of Cu2+, Ni2+ and Zn2+ adsorption on mango peel waste from constituted metal solution and genuine electroplating effluent. Sep Sci Technol 44(15):3770–3791CrossRefGoogle Scholar
  32. 32.
    Zheng L et al (2010) Equilibrium and kinetic studies of adsorption of Cd(II) from aqueous solution using modified corn stalk. J Hazard Mater 176(1–3):650–656CrossRefGoogle Scholar
  33. 33.
    Zheng L et al (2010) Removal of cadmium (II) from aqueous solution by corn stalk graft copolymers. Biores Technol 101(15):5820–5826CrossRefGoogle Scholar
  34. 34.
    Wong K et al (2003) Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere 50(1):23–28CrossRefGoogle Scholar
  35. 35.
    Ahalya N, Kanamadi R, Ramachandra T (2005) Biosorption of chromium (VI) from aqueous solutions by the husk of Bengal gram (Cicer arientinum). Electron J Biotechnol 8(3):0–0CrossRefGoogle Scholar
  36. 36.
    Oliveira WE et al (2008) Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions. J Hazard Mater 152(3):1073–1081CrossRefGoogle Scholar
  37. 37.
    Alomá I et al (2012) Removal of nickel (II) ions from aqueous solutions by biosorption on sugarcane bagasse. J Taiwan Inst Chem Eng 43(2):275–281CrossRefGoogle Scholar
  38. 38.
    Velazquez-Jimenez LH, Pavlick A, Rangel-Mendez JR (2013) Chemical characterization of raw and treated agave bagasse and its potential as adsorbent of metal cations from water. Ind Crops Prod 43:200–206CrossRefGoogle Scholar
  39. 39.
    Martín-Lara MÁ et al (2010) Modification of the sorptive characteristics of sugarcane bagasse for removing lead from aqueous solutions. Desalination 256(1–3):58–63CrossRefGoogle Scholar
  40. 40.
    Khoramzadeh E, Nasernejad B, Halladj R (2013) Mercury biosorption from aqueous solutions by sugarcane bagasse. J Taiwan Inst Chem Eng 44(2):266–269CrossRefGoogle Scholar
  41. 41.
    Boota R, Bhatti HN, Hanif MA (2009) Removal of Cu(II) and Zn(II) using lignocellulosic fiber derived from Citrus reticulata (Kinnow) waste biomass. Sep Sci Technol 44(16):4000–4022CrossRefGoogle Scholar
  42. 42.
    Daneshfozoun S, Abdullah B, Abdullah MA (2014) Heavy metal removal by oil palm empty fruit bunches (OPEFB) biosorbent. In: Applied mechanics and materials. Trans Tech PublicationsGoogle Scholar
  43. 43.
    Daneshfozoun S, Abdullah B, Abdullah MA (2016) The effects of oil palm empty fruit bunch sorbent sizes on plumbum (II) ion sorption. In: Advanced materials research. Trans Tech PublicationsGoogle Scholar
  44. 44.
    Nazir MS, Ajab H, Raza MR, Abdullah MA (2018) Surface modification of cellulose fibers from oil palm empty fruit bunches for heavy metal ion sorption and diesel desulphurization. Desalin Water Treat 107: 241–256CrossRefGoogle Scholar
  45. 45.
    Ajab H, Dennis JO, Abdullah MA (2018) Synthesis and characterization of cellulose and hydroxyapatite-carbon electrode composite for trace plumbum ions detection and its validation in blood serum. Int J Biol Macromol 113:376–385CrossRefGoogle Scholar
  46. 46.
    Kaur R et al (2012) Biosorption the possible alternative to existing conventional technologies for sequestering heavy metal ions from aqueous streams: a review. Univ J Environ Res Technol 2(4)Google Scholar
  47. 47.
    Wei W et al (2016) Biosorption of Pb(II) from aqueous solution by extracellular polymeric substances extracted from Klebsiella sp. J1: adsorption behavior and mechanism assessment. Sci Rep 6:31575Google Scholar
  48. 48.
    Sargın İ (2015) Preparation of chitosan microcapsules and investigation of its metal adsorption properties. Selçuk Üniversitesi Fen Bilimleri EnstitüsüGoogle Scholar
  49. 49.
    Homagai PL (2018) Studies on the development of natural cation exchanger for heavy metals removalGoogle Scholar
  50. 50.
    Zhang YHP (2013) Next generation biorefineries will solve the food, biofuels, and environmental trilemma in the energy–food–water nexus. Energy Sci Eng 1(1):27–41CrossRefGoogle Scholar
  51. 51.
    Dax D et al (2013) Amphiphilic spruce galactoglucomannan derivatives based on naturally-occurring fatty acids. BioResources 8(3):3771–3790CrossRefGoogle Scholar
  52. 52.
    Wang J et al (2013) Collagen/cellulose hydrogel beads reconstituted from ionic liquid solution for Cu(II) adsorption. Carbohyd Polym 98(1):736–743CrossRefGoogle Scholar
  53. 53.
    Abbas A et al (2017) Design, characterization and evaluation of hydroxyethylcellulose based novel regenerable supersorbent for heavy metal ions uptake and competitive adsorption. Int J Biol Macromol 102:170–180CrossRefGoogle Scholar
  54. 54.
    Abbas A et al (2017) Modified hydroxyethylcellulose: a regenerable super-sorbent for Cd2+ uptake from spiked high-hardness groundwater. Cellul Chem Technol 51(1–2):167–174Google Scholar
  55. 55.
    Kweon D-K et al (2001) Adsorption of divalent metal ions by succinylated and oxidized corn starches. Carbohyd Polym 46(2):171–177CrossRefGoogle Scholar
  56. 56.
    Song X et al (2006) Preparation and properties of octenyl succinic anhydride modified early indica rice starch. Starch-Stärke 58(2):109–117CrossRefGoogle Scholar
  57. 57.
    Marcazzan M et al (1999) An ESR assay for α-amylase activity toward succinylated starch, amylose and amylopectin. J Biochem Biophys Methods 38(3):191–202CrossRefGoogle Scholar
  58. 58.
    Yamaguchi R et al (1981) Preparation of partially N-succinylated chitosans and their cross-linked gels. Carbohyd Res 88(1):172–175CrossRefGoogle Scholar
  59. 59.
    Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632CrossRefGoogle Scholar
  60. 60.
    Kumar MNR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27CrossRefGoogle Scholar
  61. 61.
    Shukla SK et al (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58CrossRefGoogle Scholar
  62. 62.
    Sorlier P et al (2001) Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromol 2(3):765–772CrossRefGoogle Scholar
  63. 63.
    Miretzky P, Cirelli AF (2009) Hg(II) removal from water by chitosan and chitosan derivatives: a review. J Hazard Mater 167(1–3):10–23CrossRefGoogle Scholar
  64. 64.
    Dash M et al (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36(8):981–1014CrossRefGoogle Scholar
  65. 65.
    Jayakumar R et al (2005) Graft copolymerized chitosan—present status and applications. Carbohyd Polym 62(2):142–158CrossRefGoogle Scholar
  66. 66.
    Ryu SW et al (2004) Synthesis of well-defined high-density branched polymers carrying two branch chains in each repeating unit by coupling reaction of benzyl bromide-functionalized polystyrenes with polymer anions comprised of two polymer segments. Macromolecules 37(17):6291–6298CrossRefGoogle Scholar
  67. 67.
    Lavanya R et al (2017) Adsorptive removal of copper (II) and lead (II) using chitosan-g-maleic anhydride-g-methacrylic acid copolymer. Int J Biol Macromol 104:1495–1508CrossRefGoogle Scholar
  68. 68.
    Razzaz A et al (2015) J Taiwan Inst Chem EngGoogle Scholar
  69. 69.
    Kumar I, Natrayasamy V (2017) Development of multivalent metal ion imprinted chitosan biocomposites for phosphate sorptionGoogle Scholar
  70. 70.
    Sargın İ, Arslan G, Kaya M (2016) Efficiency of chitosan–algal biomass composite microbeads at heavy metal removal. React Funct Polym 98:38–47CrossRefGoogle Scholar
  71. 71.
    Pereao O et al (2017) Electrospinning: polymer nanofibre adsorbent applications for metal ion removal. J Polym Environ 25(4):1175–1189CrossRefGoogle Scholar
  72. 72.
    Karthik R, Meenakshi S (2015) Removal of Cr(VI) ions by adsorption onto sodium alginate-polyaniline nanofibers. Int J Biol Macromol 72:711–717CrossRefGoogle Scholar
  73. 73.
    Lim S-F et al (2009) Removal of copper by calcium alginate encapsulated magnetic sorbent. Chem Eng J 152(2–3):509–513CrossRefGoogle Scholar
  74. 74.
    Dogan H (2012) Preparation and characterization of calcium alginate-based composite adsorbents for the removal of Cd, Hg, and Pb ions from aqueous solution. Toxicol Environ Chem 94(3):482–499CrossRefGoogle Scholar
  75. 75.
    Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37(18):4311–4330CrossRefGoogle Scholar
  76. 76.
    Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohyd Polym 84(1):40–53CrossRefGoogle Scholar
  77. 77.
    Lee KY et al (2009) Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev 61(12):1020–1032CrossRefGoogle Scholar
  78. 78.
    Huang Z-M et al (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253CrossRefGoogle Scholar
  79. 79.
    Elsabee MZ, Naguib HF, Morsi RE (2012) Chitosan based nanofibers, review. Mater Sci Eng C 32(7):1711–1726CrossRefGoogle Scholar
  80. 80.
    Ramakrishna S et al (2006) Electrospun nanofibers: solving global issues. Mater Today 9(3):40–50CrossRefGoogle Scholar
  81. 81.
    Ahmed S, Ikram S (2015) Chitosan & its derivatives: a review in recent innovations. Int J Pharm Sci Res 6(1):14Google Scholar
  82. 82.
    Shariful MI et al (2017) Adsorption of divalent heavy metal ion by mesoporous-high surface area chitosan/poly (ethylene oxide) nanofibrous membrane. Carbohyd Polym 157:57–64CrossRefGoogle Scholar
  83. 83.
    Habiba U et al (2017) Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. J Hazard Mater 322:182–194CrossRefGoogle Scholar
  84. 84.
    Mohamed RR, Elella MHA, Sabaa MW (2017) Cytotoxicity and metal ions removal using antibacterial biodegradable hydrogels based on N-quaternized chitosan/poly (acrylic acid). Int J Biol Macromol 98:302–313CrossRefGoogle Scholar
  85. 85.
    Gupta V et al (2009) Low-cost adsorbents: growing approach to wastewater treatment—a review. Crit Rev Environ Sci Technol 39(10):783–842CrossRefGoogle Scholar
  86. 86.
    Goel J et al (2005) Removal of lead (II) by adsorption using treated granular activated carbon: batch and column studies. J Hazard Mater 125(1–3):211–220CrossRefGoogle Scholar
  87. 87.
    Han R et al (2009) Characterization and properties of iron oxide-coated zeolite as adsorbent for removal of copper (II) from solution in fixed bed column. Chem Eng J 149(1–3):123–131CrossRefGoogle Scholar
  88. 88.
    Taty-Costodes VC et al (2005) Removal of lead (II) ions from synthetic and real effluents using immobilized Pinus sylvestris sawdust: adsorption on a fixed-bed column. J Hazard Mater 123(1–3):135–144CrossRefGoogle Scholar
  89. 89.
    Chen JP, Wang X (2000) Removing copper, zinc, and lead ion by granular activated carbon in pretreated fixed-bed columns. Sep Purif Technol 19(3):157–167CrossRefGoogle Scholar
  90. 90.
    Mohammed N et al (2016) Continuous flow adsorption of methylene blue by cellulose nanocrystal-alginate hydrogel beads in fixed bed columns. Carbohyd Polym 136:1194–1202CrossRefGoogle Scholar
  91. 91.
    Mojumdar S, Varshney K, Agrawal A (2006) Hybrid fibrous ion exchange materials: past, present and future. Res J Chem Environ 10(1):89–97Google Scholar
  92. 92.
    Mojumdar S et al (2006) Synthetic and ion-exchange studies on a lead selective acrylamide thorium (IV) phosphate hybrid fibrous ion exchanger. Res J Chem Environ 10:85–89Google Scholar
  93. 93.
    Varshney K, Agrawal A, Mojumdar S (2007) Pyridine based cerium (IV) phosphate hybrid fibrous ion exchanger: synthesis, characterization and thermal behaviour. J Therm Anal Calorim 90(3):731–734CrossRefGoogle Scholar
  94. 94.
    Varshney K, Agrawal A, Mojumdar S (2007) Pyridine based thorium (IV) phosphate hybrid fibrous ion exchanger: synthesis, characterization and thermal behaviour. J Therm Anal Calorim 90(3):721–724CrossRefGoogle Scholar
  95. 95.
    Shahadat M et al (2012) Synthesis, characterization, photolytic degradation, electrical conductivity and applications of a nanocomposite adsorbent for the treatment of pollutants. RSC Adv 2(18):7207–7220CrossRefGoogle Scholar
  96. 96.
    Pouliot Y, Conway V, Leclerc P-L (2014) Separation and concentration technologies in food processing. In: Food processing: principles and applications, pp. 33–60CrossRefGoogle Scholar
  97. 97.
    Camacho LM et al (2013) Advances in membrane distillation for water desalination and purification applications. Water 5(1):94–196CrossRefGoogle Scholar
  98. 98.
    Drioli E, Macedonio EF (2010) Membrane research, membrane production and membrane application in ChinaGoogle Scholar
  99. 99.
    Wu Y et al (2015) The effects of multi-functional groups from PVA and ternary multisilicon copolymer on diffusion dialysis. Sep Purif Technol 141:124–131CrossRefGoogle Scholar
  100. 100.
    Gizli N, Çınarlı S, Demircioğlu M (2012) Characterization of poly (vinylchloride) (PVC) based cation exchange membranes prepared with ionic liquid. Sep Purif Technol 97:96–107CrossRefGoogle Scholar
  101. 101.
    Kaushal S et al (2017) Synthesis and characterization of a tin (IV) antimonophosphate nano-composite membrane incorporating 1-dodecyl-3-methylimidazolium bromide ionic liquid. RSC Adv 7(21):12561–12569CrossRefGoogle Scholar
  102. 102.
    Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641CrossRefGoogle Scholar
  103. 103.
    Pavlidou S, Papaspyrides C (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198CrossRefGoogle Scholar
  104. 104.
    Kaur M, Srivastava A (2002) Photopolymerization: a review. J Macromol Sci Part C Polym Rev 42(4):481–512CrossRefGoogle Scholar
  105. 105.
    Fuchs Y, Soppera O, Haupt K (2012) Photopolymerization and photostructuring of molecularly imprinted polymers for sensor applications—a review. Anal Chim Acta 717:7–20CrossRefGoogle Scholar
  106. 106.
    Bayram I, Oral A, Şirin K (2013) Synthesis of poly(cyclohexene oxide)-montmorillonite nanocomposite via in situ photoinitiated cationic polymerization with bifunctional clay. J Chem 2013Google Scholar
  107. 107.
    Maruyama SA et al (2017) Synthesis, cation exchange and dehydration/rehydration of sodium gordaite: NaZn4(OH)6(SO4)Cl · 6H2O. Appl Clay Sci 146:100–105CrossRefGoogle Scholar
  108. 108.
    Kulkarni VV, Golder AK, Ghosh PK (2018) Synthesis and characterization of carboxylic cation exchange bio-resin for heavy metal remediation. J Hazard Mater 341:207–217CrossRefGoogle Scholar
  109. 109.
    Maity J, Ray SK (2018) Removal of Pb(II) from water using a bio-composite adsorbent-A systematic approach of optimizing synthesis and process parameters by response surface methodology. J Environ Manage 209:112–125CrossRefGoogle Scholar
  110. 110.
    Jain CK, Malik DS, Yadav AK (2016) Applicability of plant based biosorbents in the removal of heavy metals: a review. Environ Process 3(2):495–523CrossRefGoogle Scholar
  111. 111.
    Raftery R, O’Brien FJ, Cryan S-A (2013) Chitosan for gene delivery and orthopedic tissue engineering applications. Molecules 18(5):5611–5647CrossRefGoogle Scholar
  112. 112.
    Matsumoto H, Tanioka A (2011) Functionality in electrospun nanofibrous membranes based on fiber’s size. Surface Area, and Molecular Orientation. 1:249–264Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Muhammad Shahid Nazir
    • 1
  • Zaman Tahir
    • 2
  • Majid Niaz Akhtar
    • 3
  • Mohd Azmuddin Abdullah
    • 4
    Email author
  1. 1.Department of ChemistryCOMSATS University IslamabadIslamabadPakistan
  2. 2.Department of Chemical EngineeringCOMSATS University IslamabadIslamabadPakistan
  3. 3.Department of PhysicsMuhammad Nawaz Sharif University of Engineering and Technology (MNSUET)MultanPakistan
  4. 4.Institute of Marine BiotechnologyUniversiti Malaysia TerengganuKuala NerusMalaysia

Personalised recommendations