Advertisement

Metal Hexacyanoferrates: Ion Insertion (or Exchange) Capabilities

  • Angelo Mullaliu
  • Marco GiorgettiEmail author
Chapter

Abstract

Metal hexacyanoferrates are mixed-valence compounds characterized by open 3D frameworks that confer a variety of properties and allow the applicability in several fields. In this chapter, we focused on ion exchange capabilities. In the first instance, we examined diffusion-driven processes. Secondly, we addressed to electrochemically driven processes, reviewing the main currently used methods and applications.

List of Abbreviations

AM

Active material

API

Active pharmaceutical ingredient

CuHCF

Copper hexacyanoferrate

CV

Cyclic Voltammetry

ESIX

Electrochemically switched ion exchange

GCPL

Galvanostatic cycling with potential limitation

LOD

Limit of detection

MHCF

Metal hexacyanoferrate

MHCM

Metal hexacyanometallate

NiHCF

Nickel hexacyanoferrate

PB

Prussian blue

PBA

Prussian blue analogue

References

  1. 1.
    Ware M (2008) Prussian blue: artists’ pigment and chemists’ sponge. J Chem Educ 85:612.  https://doi.org/10.1021/ed085p612CrossRefGoogle Scholar
  2. 2.
    Davies H, Prussian blue: from the great wave to Starry Night, how a pigment changed the world. ABC News (2017)Google Scholar
  3. 3.
    Keggin JF, Miles FD (1936) Structures and formulae of the Prussian blues and related compounds. Nature 137:577–578.  https://doi.org/10.1038/137577a0CrossRefGoogle Scholar
  4. 4.
    Buser HJ, Schwarzenbach D, Petter W, Ludi A (1977) The crystal structure of Prussian blue: Fe4[Fe(CN)6]3.xH2O. Inorg Chem 16:2704–2710.  https://doi.org/10.1021/ic50177a008CrossRefGoogle Scholar
  5. 5.
    Wills, AS (2005) Annual reports section “A” (inorganic chemistry). Magnetism 101:472–488.  https://doi.org/10.1039/b408369pCrossRefGoogle Scholar
  6. 6.
    Herren F, Ludi, A, Fischer, P, Halg, W (1980) Neutron diffraction study of Prussian blue, Fe4[Fe(CN)6]3.xH2O. location of water molecules and long-range magnetic order, Inorg Chem 19:956–959.  https://doi.org/10.1021/ic50206a032CrossRefGoogle Scholar
  7. 7.
    Shokouhimehr M, Soehnlen ES, Khitrin A, Basu S, Huang SD (2010) Biocompatible Prussian blue nanoparticles: preparation, stability, cytotoxicity, and potential use as an MRI contrast agent. Inorg Chem Commun 13:58–61.  https://doi.org/10.1016/j.inoche.2009.10.015CrossRefGoogle Scholar
  8. 8.
    Giorgetti M, Berrettoni M, Filipponi A, Kulesza PJ, Marassi R (1997) Evidence of four-body contributions in the EXAFS spectrum of Na2Co[Fe(CN)6]. Chem Phys Lett 275:108–112.  https://doi.org/10.1016/S0009-2614(97)00724-0CrossRefGoogle Scholar
  9. 9.
    Giorgetti M, Berrettoni M (2008) Structure of Fe/Co/Ni hexacyanoferrate as probed by multiple edge X-ray absorption spectroscopy. Inorg Chem.  https://doi.org/10.1021/ic800289cCrossRefGoogle Scholar
  10. 10.
    Rodríguez-Hernández J, Reguera E, Lima E, Balmaseda J, Martínez-García R, Yee-Madeira H (2007) An atypical coordination in hexacyanometallates: Structure and properties of hexagonal zinc phases. J Phys Chem Solids 68:1630–1642.  https://doi.org/10.1016/j.jpcs.2007.03.054CrossRefGoogle Scholar
  11. 11.
    Kareis CM, Lapidus SH, Her JH, Stephens PW, Miller JS (2012) Non-Prussian blue structures and magnetic ordering of Na 2MnII[MnII(CN)6] and Na 2MnII[MnII(CN)6]2H2O. J Am Chem Soc 134:2246–2254.  https://doi.org/10.1021/ja209799yCrossRefGoogle Scholar
  12. 12.
    Martínez-García R, Knobel M, Balmaseda J, Yee-Madeira H, Reguera E (2007) Mixed valence states in cobalt iron cyanide. J Phys Chem Solids 68:290–298.  https://doi.org/10.1016/j.jpcs.2006.11.008CrossRefGoogle Scholar
  13. 13.
    Wang RY, Wessells CD, Huggins RA, Cui Y (2013) Highly reversible open framework nanoscale electrodes for divalent ion batteries. Nano Lett 13:5748–5752.  https://doi.org/10.1021/nl403669aCrossRefGoogle Scholar
  14. 14.
    Omarova M, Koishybay A, Yesibolati N, Mentbayeva A, Umirov N, Ismailov K, Adair D, Babaa M-R, Kurmanbayeva I, Bakenov Z (2015) Nickel hexacyanoferrate nanoparticles as a low cost cathode material for lithium-ion batteries. Electrochim Acta 184:58–63.  https://doi.org/10.1016/j.electacta.2015.10.031CrossRefGoogle Scholar
  15. 15.
    Wessells CD, McDowell MT, Peddada SV, Pasta M, Huggins RA, Cui Y (2012) Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage. ACS Nano 6:1688–1694.  https://doi.org/10.1021/nn204666vCrossRefGoogle Scholar
  16. 16.
    Mortimer RJ, Rosseinsky DR (1983) Electrochemical polychromicity in iron hexacyanoferrate films, and a new film form of ferric ferricyanide. J Electroanal Chem Interfacial Electrochem 151:133–147.  https://doi.org/10.1016/S0022-0728(83)80429-XCrossRefGoogle Scholar
  17. 17.
    Guadagnini L, Maljusch A, Chen X, Neugebauer S, Tonelli D, Schuhmann W (2009) Visualization of electrocatalytic activity of microstructured metal hexacyanoferrates by means of redox competition mode of scanning electrochemical microscopy (RC-SECM). Electrochim Acta 54:3753–3758.  https://doi.org/10.1016/j.electacta.2009.01.076CrossRefGoogle Scholar
  18. 18.
    Shan Y, Yang G, Gong J, Zhang X, Zhu L, Qu L (2008) Prussian blue nanoparticles potentiostatically electrodeposited on indium tin oxide/chitosan nanofibers electrode and their electrocatalysis towards hydrogen peroxide. Electrochim Acta 53:7751–7755.  https://doi.org/10.1016/J.ELECTACTA.2008.05.035CrossRefGoogle Scholar
  19. 19.
    Mortimer RJ, Rosseinsky DR, Glidle A (1992) Polyelectrochromic Prussian blue: a chronoamperometric study of the electrodeposition. Sol Energy Mater Sol Cells 25:211–223.  https://doi.org/10.1016/0927-0248(92)90069-2CrossRefGoogle Scholar
  20. 20.
    Zadronecki M (1999) Study of growth and the electrochemical behavior of Prussian blue films using electrochemical quartz crystal microbalance. J Electrochem Soc 146:620.  https://doi.org/10.1149/1.1391653CrossRefGoogle Scholar
  21. 21.
    Giorgetti M, Scavetta E, Berrettoni M, Tonelli D (2001) Nickel hexacyanoferrate membrane as a coated wire cation-selective electrode. Analyst 126:2168–2171.  https://doi.org/10.1039/b107034gCrossRefGoogle Scholar
  22. 22.
    Giorgetti M, Tonelli D, Berrettoni M, Aquilanti G, Minicucci M (2014) Copper hexacyanoferrate modified electrodes for hydrogen peroxide detection as studied by X-ray absorption spectroscopy. J Solid State Electrochem 18:965–973.  https://doi.org/10.1007/s10008-013-2343-5CrossRefGoogle Scholar
  23. 23.
    Sato O, Iyoda T, Fujishima A, Hashimoto K (1996) Photoinduced magnetization of a cobalt-iron cyanide. Science (80-.). 272:704–705.  https://doi.org/10.1126/science.272.5262.704CrossRefGoogle Scholar
  24. 24.
    Bueno PR, Giménez-Romero D, Ferreira FF, Setti GO, Garcia-Jareño JJ, Agrisuelas J, Vicente F (2009) Electrochromic switching mechanism of iron hexacyanoferrates molecular compounds: the role of fe2 + (cn)6 vacancies. J Phys Chem C 113:9916–9920.  https://doi.org/10.1021/jp901146wCrossRefGoogle Scholar
  25. 25.
    Neff VD (1985) Some performance characteristics of a Prussian blue battery. J Electrochem Soc 132:1382.  https://doi.org/10.1149/1.2114121CrossRefGoogle Scholar
  26. 26.
    Chen R, Tanaka H, Kawamoto T, Asai M, Fukushima C, Kurihara M, Watanabe M, Arisaka M, Nankawa T (2012) Preparation of a film of copper hexacyanoferrate nanoparticles for electrochemical removal of cesium from radioactive wastewater. Electrochem Commun 25:23–25.  https://doi.org/10.1016/j.elecom.2012.09.012CrossRefGoogle Scholar
  27. 27.
    Ciabocco, M, Cancemi, P, Saladino, ML, Caponetti E, Alduina R, Berrettoni M (2018) Synthesis and antibacterial activity of iron-hexacyanocobaltate nanoparticles. J Biol Inorg Chem 1–14.  https://doi.org/10.1007/s00775-018-1544-xCrossRefGoogle Scholar
  28. 28.
    Ravi Shankaran, D, Sriman Narayanan S (1999) Characterization and application of an electrode modified by mechanically immobilized copper hexacyanoferrate. Fresenius J Anal Chem 364:686–689.  https://doi.org/10.1007/s002160051414CrossRefGoogle Scholar
  29. 29.
    Chen SM, Chan CM (2003) Preparation, characterization, and electrocatalytic properties of copper hexacyanoferrate film and bilayer film modified electrodes. J Electroanal Chem 543:161–173.  https://doi.org/10.1016/S0022-0728(03)00017-2CrossRefGoogle Scholar
  30. 30.
    Zhou D-M, Ju H-X, Chen H-Y (1996) Catalytic oxidation of dopamine at a microdisk platinum electrode modified by electrodeposition of nickel hexacyanoferrate and Nafion®. J Electroanal Chem 408:219–223.  https://doi.org/10.1016/0022-0728(95)04522-8CrossRefGoogle Scholar
  31. 31.
    de Lara González, GL, Kahlert, H, Scholz, F (2007) Catalytic reduction of hydrogen peroxide at metal hexacyanoferrate composite electrodes and applications in enzymatic analysis. Electrochim Acta 52:1968–1974.  https://doi.org/10.1016/j.electacta.2006.08.006CrossRefGoogle Scholar
  32. 32.
    Karyakin AA (2001) Prussian blue and its analogues: electrochemistry and analytical applications. Electroanalysis 13:813–819.  https://doi.org/10.1002/1521-4109(200106)13:10%3c813:AID-ELAN813%3e3.0.CO;2-ZCrossRefGoogle Scholar
  33. 33.
    Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian blue modified electrodes. Biosens Bioelectron 21:389–407.  https://doi.org/10.1016/j.bios.2004.12.001CrossRefGoogle Scholar
  34. 34.
    De Mattos IL, Gorton L, Laurell T, Malinauskas A, Karyakin AA (2000) Development of biosensors based on hexacyanoferrates. Talanta 52:791–799.  https://doi.org/10.1016/S0039-9140(00)00409-4CrossRefGoogle Scholar
  35. 35.
    Baioni AP, Vidotti M, Fiorito PA, Ponzio EA, De Torresi SIC (2007) Synthesis and characterization of copper hexacyanoferrate nanoparticles for building up long-term stability electrochromic electrodes. Langmuir 23:6796–6800.  https://doi.org/10.1021/la070161hCrossRefGoogle Scholar
  36. 36.
    Pauliukaite R, Florescu M, Brett CMA (2005) Characterization of cobalt- and copper hexacyanoferrate-modified carbon film electrodes for redox-mediated biosensors. J Solid State Electrochem 9:354–362.  https://doi.org/10.1007/s10008-004-0632-8CrossRefGoogle Scholar
  37. 37.
    Giorgetti M, Aquilanti G, Ciabocco M, Berrettoni M (2015) Anatase-driven charge transfer involving a spin transition in cobalt iron cyanide nanostructures. Phys Chem Chem Phys 17:22519–22522.  https://doi.org/10.1039/C5CP03580ECrossRefGoogle Scholar
  38. 38.
    Berrettoni M, Giorgetti M, Zamponi S, Conti P, Ranganathan D, Zanotto A, Saladino ML, Caponetti E (2010) Synthesis and characterization of nanostructured cobalt hexacyanoferrate. J Phys Chem C 114:6401–6407.  https://doi.org/10.1021/jp100367pCrossRefGoogle Scholar
  39. 39.
    Ellis D, Eckhoff M, Neff VD (1981)Electrochromism in the mixed-valence hexacyanides. 1. Voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian blue. J Phys Chem 85:1225–1231.  https://doi.org/10.1021/j150609a026CrossRefGoogle Scholar
  40. 40.
    Rajan KP, Neff VD (1982) Electrochromism in the mixed-valence hexacyanides. 2. Kinetics of the reduction of ruthenium purple and Prussian blue. J Phys Chem 86:4361–4368.  https://doi.org/10.1021/j100219a017CrossRefGoogle Scholar
  41. 41.
    Carpenter MK, Conell RS, Simko SJ (1990) Electrochemistry and electrochromism of vanadium hexacyanoferrate. Inorg Chem 29:845–850.  https://doi.org/10.1021/ic00329a054CrossRefGoogle Scholar
  42. 42.
    Siperko LM, Kuwana T (1983) Electrochemical and spectroscopic studies of metal hexacyanometalate films. J Electrochem Soc 130:396.  https://doi.org/10.1149/1.2119718CrossRefGoogle Scholar
  43. 43.
    Jiang M, Zhao Z (1990) A novel stable electrochromic thin film: a Prussian blue analogue based on palladium hexacyanoferrate. J Electroanal Chem Interfacial Electrochem 292:281–287.  https://doi.org/10.1016/0022-0728(90)87343-ICrossRefGoogle Scholar
  44. 44.
    Wang RY, Shyam B, Stone KH, Weker JN, Pasta M, Lee H-W, Toney, MF, Cui Y (2015) Reversible multivalent (monovalent, divalent, trivalent) ion insertion in open framework materials. Adv Energy Mater n/a-n/a.  https://doi.org/10.1002/aenm.201401869CrossRefGoogle Scholar
  45. 45.
    Pressman BC, Harris EJ, Jagger WS, Johnson JH (1967) Antibiotic-mediated transport of alkali ions across lipid barriers. Proc Natl Acad Sci USA 58:1949–1956.  https://doi.org/10.1073/PNAS.58.5.1949CrossRefGoogle Scholar
  46. 46.
    Guadagnini L, Tonelli D, Giorgetti M (2010) Improved performances of electrodes based on Cu2+-loaded copper hexacyanoferrate for hydrogen peroxide detection. Electrochim Acta 55:5036–5039.  https://doi.org/10.1016/j.electacta.2010.04.019CrossRefGoogle Scholar
  47. 47.
    Tani Y, Eun H, Umezawa Y (1998) A cation selective electrode based on copper(II) and nickel(II) hexacyanoferrates: Dual response mechanisms, selective uptake or adsorption of analyte cations. Electrochim Acta 43:3431–3441.  https://doi.org/10.1016/S0013-4686(98)00089-9CrossRefGoogle Scholar
  48. 48.
    Düssel H, Dostal A, Scholz F (1996) Hexacyanoferrate-based composite ion-sensitive electrodes for voltammetry. Fresenius J Anal Chem 355:21–28.  https://doi.org/10.1007/s0021663550021CrossRefGoogle Scholar
  49. 49.
    Ang JQ, Li SFY (2012) Novel sensor for simultaneous determination of K+ and Na+ using Prussian blue pencil graphite electrode. Sens Actuators, B Chem 173:914–918.  https://doi.org/10.1016/j.snb.2012.07.119CrossRefGoogle Scholar
  50. 50.
    Bakker E, Pretsch E, Bühlmann P (2000) Selectivity of potentiometric ion sensors, Anal Chem 72:1127–1133.  https://doi.org/10.1021/ac991146nCrossRefGoogle Scholar
  51. 51.
    Engel D, Grabner EW (1985) Copper hexacyanoferrate-modified glassy carbon: a novel type of potassium-selective electrode, Berichte Der Bunsengesellschaft Für Phys. Chemie 89:982–986.  https://doi.org/10.1002/bbpc.19850890911CrossRefGoogle Scholar
  52. 52.
    Cox JA, Das BK (1985) Voltammetric determination of nonelectroactive ions at a modified electrode. Anal Chem 57:2739–2740.  https://doi.org/10.1021/ac00290a068CrossRefGoogle Scholar
  53. 53.
    Krishnan V, Xidis AL, Neff VD (1990) Prussian blue solid-state films and membranes as potassium ion-selective electrodes. Anal Chim Acta 239:7–12.  https://doi.org/10.1016/S0003-2670(00)83828-3CrossRefGoogle Scholar
  54. 54.
    Ho K-C, Lin C-L (2001) A novel potassium ion sensing based on Prussian blue thin films. Sens Actuators B Chem 76:512–518.  https://doi.org/10.1016/S0925-4005(01)00605-0CrossRefGoogle Scholar
  55. 55.
    Zhiqiang G, Xingyao Z, Guangqing W, Peibiao L, Zaofan Z (1991) Potassium ion-selective electrode based on a cobalt(II)-hexacyanoferrate film-modified electrode. Anal Chim Acta 244:39–48.  https://doi.org/10.1016/S0003-2670(00)82476-9CrossRefGoogle Scholar
  56. 56.
    Huang C-Y, Lee J-D, Tseng C-L, Lo J-M (1994) A rapid method for the determination of 137Cs in environmental water samples. Anal Chim Acta 294:221–226.  https://doi.org/10.1016/0003-2670(94)80198-3CrossRefGoogle Scholar
  57. 57.
    Thomsen KN, Baldwin RP (1989) Amperometric detection of nonelectroactive cations in flow systems at a cupric hexacyanoferrate electrode. Anal Chem 61:2594–2598.  https://doi.org/10.1021/ac00198a002CrossRefGoogle Scholar
  58. 58.
    Thomsen KN, Baldwin RP (1990) Evaluation of electrodes coated with metal hexacyanoferrate as amperometric sensors for nonelectroactive cations in flow systems. Electroanalysis 2:263–271.  https://doi.org/10.1002/elan.1140020402CrossRefGoogle Scholar
  59. 59.
    Hartmann M, Grabner EW, Bergveld P (1991) Alkali ion sensor based on Prussian blue-covered interdigitated array electrodes. Sens Actuators B Chem 4:333–336.  https://doi.org/10.1016/0925-4005(91)80132-4CrossRefGoogle Scholar
  60. 60.
    Chen SM, Peng KT, Lin KC (2005) Preparation of thallium hexacyanoferrate film and mixed-film modified electrodes with cobalt(II) hexacyanoferrate. Electroanalysis 17:319–326.  https://doi.org/10.1002/elan.200403065CrossRefGoogle Scholar
  61. 61.
    Zen JM, Chen PY, Kumar AS (2003) Flow injection analysis of an ultratrace amount of arsenite using a prussian blue-modified screen-printed electrode. Anal Chem 75:6017–6022.  https://doi.org/10.1021/ac0301649CrossRefGoogle Scholar
  62. 62.
    Liu R, Sun B, Liu D, Sun A (1996) Flow injection gas-diffusion amperometric determination of trace amounts of ammonium ions with a cupric hexacyanoferrate. Talanta 43:1049–1054.  https://doi.org/10.1016/0039-9140(96)01858-9CrossRefGoogle Scholar
  63. 63.
    Klink S, Ishige Y, Schuhmann W (2017) Prussian blue analogues: a versatile framework for solid-contact ion-selective electrodes with tunable potentials. ChemElectroChem 4:490–494.  https://doi.org/10.1002/celc.201700091CrossRefGoogle Scholar
  64. 64.
    US Department of Health and Human Services, Radiogardase® (2012). http://www.remm.nlm.gov
  65. 65.
    Altagracia-Martinez M, Kravzov-Jinich J, Martínez-Núñez J, Ríos-Castañeda C, López-Naranjo F (2012) Prussian blue as an antidote for radioactive thallium and cesium poisoning. Orphan Drugs Res Rev 13.  https://doi.org/10.2147/odrr.s31881
  66. 66.
    Richmond CR (1968) Accelerating the turnover of internally deposited radiocesium, Diagnosis Treat Depos RadionuclidesGoogle Scholar
  67. 67.
    Thompson DF, Church CO (2001) Prussian blue for treatment of radiocesium poisoning. Pharmacotherapy 21:1364–1367.  https://doi.org/10.1592/phco.21.17.1364.34426CrossRefGoogle Scholar
  68. 68.
    International Atomic Energy Agency (1988) The radiological accident in Goiânia, Vienna. doi:92-0-129088-8Google Scholar
  69. 69.
    Faustino PJ, Yang Y, Progar JJ, Brownell CR, Sadrieh N, May JC, Leutzinger E, Place DA, Duffy EP, Houn F, Loewke SA, Mecozzi VJ, Ellison CD, Khan MA, Hussain AS, Lyon RC (2008) Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue. J Pharm Biomed Anal 47:114–125.  https://doi.org/10.1016/j.jpba.2007.11.049CrossRefGoogle Scholar
  70. 70.
    Catalan R, Agrisuelas J, Cuenca A, Garcia-Jareno JJ, Roig AF, Vicente, F, Garc JJ (2015) Interfacial role of cesium in Prussian blue films. J Electrochem Soc 162 H727–H733.  https://doi.org/10.1149/2.1061509jesCrossRefGoogle Scholar
  71. 71.
    Kravzov J, Rios C, Altagracia M, Monroy-Noyola A, López F (1993) Relationship between physicochemical properties of prussian blue and its efficacy as antidote against thallium poisoning. J Appl Toxicol 13:213–216.  https://doi.org/10.1002/jat.2550130313CrossRefGoogle Scholar
  72. 72.
    Zhang H, Zhao X, Wei J, Li F (2015) Removal of cesium from low-level radioactive wastewaters using magnetic potassium titanium hexacyanoferrate. Chem Eng J 275:262–270.  https://doi.org/10.1016/j.cej.2015.04.052CrossRefGoogle Scholar
  73. 73.
    Loos-Neskovic C, Ayrault S, Badillo V, Jimenez B, Garnier E, Fedoroff M, Jones DJ, Merinov B (2004) Structure of copper-potassium hexacyanoferrate (II) and sorption mechanisms of cesium. J Solid State Chem 177:1817–1828.  https://doi.org/10.1016/j.jssc.2004.01.018CrossRefGoogle Scholar
  74. 74.
    Michel C, Barré Y, de Dieuleveult C, Grandjean A, De Windt L (2015) Cs ion exchange by a potassium nickel hexacyanoferrate loaded on a granular support. Chem Eng Sci 137:904–913.  https://doi.org/10.1016/j.ces.2015.07.043CrossRefGoogle Scholar
  75. 75.
    Yousefi T, Torab-Mostaedi M, Moosavian MA, Mobtaker HG (2015) Potential application of a nanocomposite: HCNFe@polymer for effective removal of Cs (I) from nuclear waste. Prog Nucl Energy 85:631–639.  https://doi.org/10.1016/j.pnucene.2015.08.006CrossRefGoogle Scholar
  76. 76.
    Arisaka M, Watanabe M, Ishizaki M, Kurihara M, Chen R, Tanaka H (2015) Cesium adsorption ability and stability of metal hexacyanoferrates irradiated with gamma rays. J Radioanal Nucl Chem 303:1543–1547.  https://doi.org/10.1007/s10967-014-3710-0CrossRefGoogle Scholar
  77. 77.
    Lilga MA, Orth RJ, Sukamto JPH, Rassat SD, Genders JD, Gopal R (2001) Cesium separation using electrically switched ion exchange. Sep Purif Technol.  https://doi.org/10.1016/s1383-5866(01)00145-9CrossRefGoogle Scholar
  78. 78.
    Chen R, Tanaka H, Kawamoto T, Asai M, Fukushima C, Kurihara M, Ishizaki M, Watanabe M, Arisaka M, Nankawa T (2013) Thermodynamics and mechanism studies on electrochemical removal of cesium ions from aqueous solution using a nanoparticle film of copper hexacyanoferrate. ACS Appl Mater Interfaces 5:12984–12990.  https://doi.org/10.1021/am403748bCrossRefGoogle Scholar
  79. 79.
    Chen R, Asai M, Fukushima C, Ishizaki M, Kurihara M, Arisaka M, Nankawa T, Watanabe M, Kawamoto T, Tanaka H (2015) Column study on electrochemical separation of cesium ions from wastewater using copper hexacyanoferrate film. J Radioanal Nucl Chem 303:1491–1495.  https://doi.org/10.1007/s10967-014-3588-xCrossRefGoogle Scholar
  80. 80.
    Ayrault S, Jimenez B, Garnier E, Fedoroff M, Jones DJ, Loos-Neskovic C (1998) Sorption mechanisms of cesium on CuII2FeII(CN)6 and CuII3[FeIII(CN)6]2 hexacyanoferrates and their relation to the crystalline structure. J Solid State Chem 141:475–485.  https://doi.org/10.1006/jssc.1998.7997CrossRefGoogle Scholar
  81. 81.
    Sangvanich T, Sukwarotwat V, Wiacek RJ, Grudzien RM, Fryxell GE, Addleman RS, Timchalk C, Yantasee W (2010) Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater 182:225–231.  https://doi.org/10.1016/j.jhazmat.2010.06.019CrossRefGoogle Scholar
  82. 82.
    Parajuli D, Takahashi A, Noguchi H, Kitajima A, Tanaka H, Takasaki M, Yoshino K, Kawamoto T (2016) Comparative study of the factors associated with the application of metal hexacyanoferrates for environmental Cs decontamination. Chem Eng J 283:1322–1328.  https://doi.org/10.1016/j.cej.2015.08.076CrossRefGoogle Scholar
  83. 83.
    Zadronecki M, Linek IA, Stroka J, Wrona PK, Galus Z (2001) High affinity of thallium ions to copper hexacyanoferrate films. J Electrochem Soc 148:E348.  https://doi.org/10.1149/1.1381074CrossRefGoogle Scholar
  84. 84.
    Greenwood NN, Earnshaw A (1989) Chemistry of the elements. Pergamon Press, OxfordGoogle Scholar
  85. 85.
    Mizushima K, Jones P, Wiseman P, Goodenough JB (1981) LixCoO2 (0 < x≤1): a new cathode material for batteries of high energy density. Solid State Ionics 3–4:171–174.  https://doi.org/10.1016/0167-2738(81)90077-1CrossRefGoogle Scholar
  86. 86.
    Rongguo C, Juan G, Liwen Y, Huy D, Liedtke M (2016) Supply and demand of lithium and galliumGoogle Scholar
  87. 87.
    Wessells CD, Peddada SV, McDowell MT, Huggins RA, Cui Y (2012) The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes. J Electrochem Soc 159:A98.  https://doi.org/10.1149/2.060202jesCrossRefGoogle Scholar
  88. 88.
    Mullaliu A, Sougrati M-T, Louvain N, Aquilanti G, Doublet M-L, Stievano L, Giorgetti M (2017) The electrochemical activity of the nitrosyl ligand in copper nitroprusside: a new possible redox mechanism for lithium battery electrode materials? Electrochim Acta 257.  https://doi.org/10.1016/j.electacta.2017.10.107CrossRefGoogle Scholar
  89. 89.
    Moritomo Y, Urase S, Shibata T (2016) Enhanced battery performance in manganese hexacyanoferrate by partial substitution. Electrochim Acta 210:963–969.  https://doi.org/10.1016/j.electacta.2016.05.205CrossRefGoogle Scholar
  90. 90.
    Song J, Wang L, Lu Y, Liu J, Guo B, Xiao P, Lee J-J, Yang X-Q, Henkelman G, Goodenough JB (2015) Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J Am Chem Soc 137:150213162944002.  https://doi.org/10.1021/ja512383bCrossRefGoogle Scholar
  91. 91.
    Wessells CD, Peddada SV, Huggins RA, Cui Y (2011) Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett 11:5421–5425.  https://doi.org/10.1021/nl203193qCrossRefGoogle Scholar
  92. 92.
    Eftekhari A (2004) Potassium secondary cell based on Prussian blue cathode. J Power Sources 126:221–228.  https://doi.org/10.1016/j.jpowsour.2003.08.007CrossRefGoogle Scholar
  93. 93.
    Shiga T, Kondo H, Kato Y, Inoue M (2015) Insertion of calcium ion into Prussian blue analogue in nonaqueous solutions and its application to a rechargeable battery with dual carriers. J Phys Chem C 119:27946–27953.  https://doi.org/10.1021/acs.jpcc.5b10245CrossRefGoogle Scholar
  94. 94.
    Chae MS, Hyoung J, Jang M, Lee H, Hong S-T (2017) Potassium nickel hexacyanoferrate as a high-voltage cathode material for nonaqueous magnesium-ion batteries. J Power Sources 363:269–276.  https://doi.org/10.1016/j.jpowsour.2017.07.094CrossRefGoogle Scholar
  95. 95.
    Liu S, Pan GL, Li GR, Gao XP (2014) Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries. J Mater Chem A 3:959–962.  https://doi.org/10.1039/C4TA04644GCrossRefGoogle Scholar
  96. 96.
    Ling C, Chen J, Mizuno F (2013) First-principles study of alkali and alkaline earth ion intercalation in iron hexacyanoferrate: the important role of ionic radius. J Phys Chem C 117:21158–21165.  https://doi.org/10.1021/jp4078689CrossRefGoogle Scholar
  97. 97.
    Wessells CD, Huggins RA, Cui Y (2011) Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat Commun 2:550.  https://doi.org/10.1038/ncomms1563
  98. 98.
    Mullaliu A, Aquilanti G, Conti P, Plaisier JR, Fehse M, Stievano L, Giorgetti M (2018) Copper electroactivity in Prussian blue based cathode disclosed by Operando XAS. J Phys Chem C 122(2018):15868–15877. https://doi.org/10.1021/acs.jpcc.8b03429CrossRefGoogle Scholar
  99. 99.
    Makowski O, Stroka J, Kulesza PJ, Malik MA, Galus Z (2002) Electrochemical identity of copper hexacyanoferrate in the solid-state: evidence for the presence and redox activity of both iron and copper ionic sites. J Electroanal Chem 532:157–164.  https://doi.org/10.1016/S0022-0728(02)00965-8CrossRefGoogle Scholar
  100. 100.
    Giorgetti M, Guadagnini L, Tonelli D, Minicucci M, Aquilanti G (2012) Structural characterization of electrodeposited copper hexacyanoferrate films by using a spectroscopic multi-technique approach. Phys Chem Chem Phys 14:5527.  https://doi.org/10.1039/c2cp24109aCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Industrial ChemistryUniversity of BolognaBolognaItaly

Personalised recommendations