Advertisement

Computation of Spectral Characteristics for Charged Integral Equations

  • Diego Caratelli
  • Pierpaolo Natalini
  • Roberto Patrizi
  • Paolo E. RicciEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 276)

Abstract

The Rayleigh-Ritz and the inverse iteration methods are used in order to compute the eigenvalues of charged Fredholm-Stieltjes integral equations, i.e. Fredholm equations with respect to suitable Stieltjes-type measures. Some applications are shown, including approximation of the relevant eigenfunctions. Starting from the problem of a string charged by a finite number of cursors, a survey including the extensions to the 2D and 3D dimensional problems is presented.

Keywords

Charged Fredholm-Stieltjes integral equations Eigenvalues The Rayleigh-Ritz method Inverse iteration method 

References

  1. 1.
    Duhamel, J.: Les vibrations d’une corde flessible chargé d’un ou de plusieurs curseurs. J. École Polyt., XVII 29, 1–36 (1843)Google Scholar
  2. 2.
    Rayleigh, L.: The Theory of Sound, Macmillan & Co, London (1894) (I (1894))Google Scholar
  3. 3.
    Kneser, A.: Belastate Integralgleichungen. Rend. Circ. Mat. Palermo XXXVII, 169–197 (1914)CrossRefGoogle Scholar
  4. 4.
    Teichmann, J.: Mechanische Probleme die auf belastate Integralgleichungen führen, (Dissertation Universität Breslau)Google Scholar
  5. 5.
    Mikhlin, S.G.: Integral Equations and their Applications, 2nd edn. Pergamon Press, Oxford (1964)Google Scholar
  6. 6.
    Zaanen, A.C.: Linear Analysis. Measure and Integral, Banach and Hilbert Space, Linear Integral Equations, Interscience Publ. Inc., New York; North Holland Publ. Co., Amsterdam; P. Noordhoff N.V., Groningen (1953)Google Scholar
  7. 7.
    Anselone, P.M.: Collectively Compact Operator Approximation theory and Application to Integral Equations. Prentice-Hall Series in Automatic Computation. Prentice-Hall Inc., Englewood Cliffs, N.J. (1971)zbMATHGoogle Scholar
  8. 8.
    Miranda, C.: Opere scelte, (Spagnolo, S., Lanconelli, E., Sbordone, C.G., Trombetti, : C.: Editors), Cremonese, Roma (1992)Google Scholar
  9. 9.
    Miranda, C.: Alcune generalizzazioni delle serie di funzioni ortogonali e loro applicazioni. Rend. Sem. Mat. Torino 7, 5–17 (1938/40)Google Scholar
  10. 10.
    Fichera, G.: Abstract and Numerical Aspects of Eigenvalue Theory, Lecture Notes, The University of Alberta. Department of Math, Edmonton (1973)Google Scholar
  11. 11.
    Fichera, G.: Numerical and quantitative analysis, Surveys and ReferenceWorks in Mathematics, Pitman, Boston, Mass., London (1978)Google Scholar
  12. 12.
    Natalini, P.S., Noschese, P., Ricci, P.E.: An iterative method for computing the eigenvalues of second kind Fredholm operators and applications. In: Proceedings International Workshop on “Orthogonal Polynomials: Numerical and Symbolic Algorithms", Leganés (Madrid), 1998, in E.T.N.A., 9, 128–136 (1999)Google Scholar
  13. 13.
    Widder, D.V.: Advanced Calculus, 3rd edn. Dover Publication Inc., New York (1999)zbMATHGoogle Scholar
  14. 14.
    Jung, I.H., Kwon, K.H., Lee, D.W., Littlejohn, L.L.: Sobolev orthogonal polynomials and spectral differential equations. Trans. Amer. Math. Soc. 347, 3629–3643 (1995)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Marcellán, F., Pérez, T.E., Piñar, M.A., Ronveaux, A.: General Sobolev orthogonal polynomials. J. Math. Anal. Appl. 200, 614–634 (1996)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hochstadt, H.: Integral Equations, Pure & Applied Mathematics, A Wiley Interscience Publication, New York, London (1973)Google Scholar
  17. 17.
    Baker, C.T.H.: The Numerical Treatment of Integral Equations. Claredon Press, Oxford (1977)zbMATHGoogle Scholar
  18. 18.
    Delves, L.M., Mohamed, J.L.: Computational Methods for Integral Equations. Cambridge University Press, Cambridge (1985)CrossRefGoogle Scholar
  19. 19.
    Stummel, F., Heiner, K.: Introduction to Numerical Analysis. Scottish Academic Press, Edinburgh (1980)Google Scholar
  20. 20.
    Krall, G.: Meccanica tecnica delle vibrazioni, Veschi. Roma I (1970)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Diego Caratelli
    • 1
    • 2
  • Pierpaolo Natalini
    • 3
  • Roberto Patrizi
    • 4
  • Paolo E. Ricci
    • 5
    Email author
  1. 1.The Antenna CompanyEindhovenThe Netherlands
  2. 2.Tomsk Polytechnic UniversityTomskRussia
  3. 3.Dipartimento di Matematica e Fisica, Largo San Leonardo Murialdo, 1Università degli Studi Roma TreRomaItalia
  4. 4.CdM Sapienza, Università di Roma, Facoltà di EconomiaRomaItalia
  5. 5.International Telematic University UniNettunoRomaItalia

Personalised recommendations