Advertisement

Road Geometric Modeling Using Laser Scanning Data: A Critical Review

  • Biswajeet PradhanEmail author
  • Maher Ibrahim Sameen
Chapter
Part of the Advances in Science, Technology & Innovation book series (ASTI)

Abstract

Road transportation is critical to economic activities and plays a dynamic role in marketing products and providing citizens with easy access to points of contact for business activities, health, education, and agriculture. Road geometric features, such as horizontal and vertical alignments, gradients, and superelevation rate, are essential data for transportation studies. Recently, laser scanning systems or LiDAR (Idrees and Pradhan 2016, 2018; Idrees et al. 2016; Fanos et al. 2016, 2018; Fanos and Pradhan 2018; Abdulwahid and Pradhan 2017; Pradhan et al. 2016; Sameen et al. 2017; Sameen and Pradhan 2017a, b) have been identified to be the most efficient way of road corridor surveying and extracting geometric road features. Unlike satellite and aerial images, LiDAR provides accurate and dense point clouds that allow the rapid mapping of the topography of a given area in a relatively short time.

References

  1. Abdulwahid, W. M., & Pradhan, B. (2017). Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR). Landslides, 14(3), 1057–1076.Google Scholar
  2. Akel, N. A., Kremeike, K., Filin, S., Sester, M., & Doytsher, Y. (2005). Dense DTM generalization aided by roads extracted from LiDAR data. In ISPRS WG III/3, III/4 (pp. 54–59). Google Scholar
  3. Alharthy, A., & Bethel, J. (2003). Automated road extraction from LIDAR data. Paper presented at the Proceedings of the ASPRS Annual Conference.Google Scholar
  4. Amiridis, K., & Psarianos, B. (2015). Three dimensional road design by applying differential geometry and conventional design approach criteria. Paper presented at the Transportation Research Board 94th Annual Meeting.Google Scholar
  5. Baatz, M., & Schäpe, A. (2000). Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation. Angewandte Geographische Informations verarbeitung, XII, 12–23.Google Scholar
  6. Baczyński, D., & Parol, M. (2004). Influence of artificial neural network structure on quality of short-term electric energy consumption forecast. IEE Proceedings-Generation, Transmission and Distribution, 151(2), 241–245.CrossRefGoogle Scholar
  7. Baltsavias, E. P. (1999). Airborne laser scanning: Basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), 199–214.CrossRefGoogle Scholar
  8. Bazi, Y., & Melgani, F. (2006). Toward an optimal SVM classification system for hyperspectral remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 44(11), 3374–3385.CrossRefGoogle Scholar
  9. Blake, A., & Isard, M. (1998). Active contours: The application of techniques from graphics, vision, control theory and statistics to visual tracking of shapes in motion. Secaucus: Springer-Verlag, London.Google Scholar
  10. Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16.CrossRefGoogle Scholar
  11. Blaschke, T., & Strobl, J. (2001). What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS. GeoBIT/GIS, 6(1), 12–17.Google Scholar
  12. Boyko, A., & Funkhouser, T. (2011). Extracting roads from dense point clouds in large scale urban environment. ISPRS Journal of Photogrammetry and Remote Sensing, 66(6), S2–S12.CrossRefGoogle Scholar
  13. Brennan, R., & Webster, T. (2006). Object-oriented land cover classification of lidar-derived surfaces. Canadian Journal of Remote Sensing, 32(2), 162–172.CrossRefGoogle Scholar
  14. Cai, H., & Rasdorf, W. (2008). Modeling road centerlines and predicting lengths in 3-D using LIDAR point cloud and planimetric road centerline data. Computer-Aided Civil and Infrastructure Engineering, 23(3), 157–173.CrossRefGoogle Scholar
  15. Cánovas-García, F., & Alonso-Sarría, F. (2015). A local approach to optimize the scale parameter in multiresolution segmentation for multispectral imagery. Geocarto International, 30(8), 937–961.CrossRefGoogle Scholar
  16. Cao, C., & Sun, Y. (2014). Automatic road centerline extraction from imagery using road GPS data. Remote Sensing, 6(9), 9014–9033.  https://doi.org/10.3390/rs6099014.CrossRefGoogle Scholar
  17. Chen, L.-C., & Lo, C.-Y. (2009). 3D road modeling via the integration of large-scale topomaps and airborne LIDAR data. Journal of the Chinese Institute of Engineers, 32(6), 811–823.  https://doi.org/10.1080/02533839.2009.9671565.CrossRefGoogle Scholar
  18. Chen, Q., Zhao, Y., Pan, S., & Wang, Y. (2016). Survey of the influence of the width of urban branch roads on the meeting of two-way vehicle flows. PLoS One, 11(2), e0149188.CrossRefGoogle Scholar
  19. Choi, Y.-W., Jang, Y.-W., Lee, H.-J., & Cho, G.-S. (2008). Three-dimensional LiDAR data classifying to extract road point in urban area. IEEE Geoscience and Remote Sensing Letters, 5(4), 725–729.CrossRefGoogle Scholar
  20. Clode, S., Kootsookos, P. J., & Rottensteiner, F. (2004). The automatic extraction of roads from LIDAR data. Paper presented at the ISPRS 2004.Google Scholar
  21. Clode, S., Rottensteiner, F., Kootsookos, P., & Zelniker, E. (2007). Detection and vectorization of roads from lidar data. Photogrammetric Engineering & Remote Sensing, 73(5), 517–535.CrossRefGoogle Scholar
  22. Cohen, L. D. (1991). On active contour models and balloons. CVGIP: Image Understanding, 53(2), 211–218.MathSciNetCrossRefGoogle Scholar
  23. Dial, G., Gibson, L., & Poulsen, R. (2001). IKONOS satellite imagery and its use in automated road extraction. Automatic Extraction of Man-Made Objects from Aerial and Space Images, 3, 357–367.Google Scholar
  24. Ding, S., Xu, X., & Nie, R. (2013). Extreme learning machine and its applications. Neural Computing and Applications, 25(3–4), 549–556.  https://doi.org/10.1007/s00521-013-1522-8.CrossRefGoogle Scholar
  25. Elberink, S. O., & Vosselman, G. (2006). Adding the third dimension to a topographic database using airborne laser scanner data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36, 92–97.Google Scholar
  26. Elvik, R. (2013). International transferability of accident modification functions for horizontal curves. Accident Analysis and Prevention, 59, 487–496.  https://doi.org/10.1016/j.aap.2013.07.010.CrossRefGoogle Scholar
  27. Fanos, A. M., Pradhan, B., Aziz, A. A., Jebur, M. N., & Park, H. J. (2016). Assessment of multi-scenario rockfall hazard based on mechanical parameters using high-resolution airborne laser scanning data and GIS in a tropical area. Environmental Earth Sciences, 75(15), 1129.Google Scholar
  28. Fanos, A. M., & Pradhan, B. (2018). Laser scanning systems and techniques in rockfall source identification and risk assessment: a critical review. Earth Systems and Environment, 1–20.Google Scholar
  29. Fanos, A. M., Pradhan, B., Mansor, S., Yusoff, Z. M., & bin Abdullah, A. F. (2018). A hybrid model using machine learning methods and GIS for potential rockfall source identification from airborne laser scanning data. Landslides, 15(9), 1833–1850.Google Scholar
  30. Feng, W., Yundong, W., & Qiang, Z. (2009, May). UAV borne real-time road mapping system. In 2009 Joint Urban Remote Sensing Event (pp. 1–7). IEEE.Google Scholar
  31. Ferraz, A., Mallet, C., & Chehata, N. (2016). Large-scale road detection in forested mountainous areas using airborne topographic lidar data. ISPRS Journal of Photogrammetry and Remote Sensing, 112, 23–36.CrossRefGoogle Scholar
  32. Friedl, M. A., & Brodley, C. E. (1997). Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment, 61(3), 399–409.CrossRefGoogle Scholar
  33. Ghasemloo, N., Reza Mobasheri, M., Madanchi Zare, A., & Memar Eftekhari, M. (2013). Road and tunnel extraction from SPOT satellite images using neural networks. Journal of Geographic Information System, 05(01), 69–74.  https://doi.org/10.4236/jgis.2013.51007.CrossRefGoogle Scholar
  34. Gikas, V., & Stratakos, J. (2012). A novel geodetic engineering method for accurate and automated road/railway centerline geometry extraction based on the bearing diagram and fractal behavior. IEEE Transactions on Intelligent Transportation Systems, 13(1), 115–126.CrossRefGoogle Scholar
  35. Goepfert, J., & Rottensteiner, F. (2009). Adaptation of roads to ALS data by means of network snakes. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 38-3/W8.Google Scholar
  36. Gong, L., Zhang, Y., Li, Z., & Bao, Q. (2010). Automated road extraction from LiDAR data based on intensity and aerial photo. Paper presented at the 2010 3rd International Congress on Image and Signal Processing (CISP).Google Scholar
  37. Göpfert, J., Rottensteiner, F., & Heipke, C. (2011). Using snakes for the registration of topographic road database objects to ALS features. ISPRS Journal of Photogrammetry and Remote Sensing, 66(6), 858–871.CrossRefGoogle Scholar
  38. Goulette, F., Nashashibi, F., Abuhadrous, I., Ammoun, S., & Laurgeau, C. (2006). An integrated on-board laser range sensing system for on-the-way city and road modelling. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(A).‏Google Scholar
  39. Grote, A., Heipke, C., & Rottensteiner, F. (2012). Road network extraction in suburban areas. The Photogrammetric Record, 27(137), 8–28.CrossRefGoogle Scholar
  40. Gruen, A., & Li, H. (1995). Road extraction from aerial and satellite images by dynamic programming. ISPRS Journal of Photogrammetry and Remote Sensing, 50(4), 11–20.Google Scholar
  41. Guan, J., Wang, Z., & Yao, X. (2010). A new approach for road centerlines extraction and width estimation. Paper presented at the 2010 IEEE 10th International Conference on Signal Processing (ICSP).Google Scholar
  42. Guan, H., Li, J., Yu, Y., Ji, Z., & Wang, C. (2015). Using mobile LiDAR data for rapidly updating road markings. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2457–2466.CrossRefGoogle Scholar
  43. Hamedianfar, A., & Shafri, H. Z. (2014). Development of fuzzy rule-based parameters for urban object-oriented classification using very high resolution imagery. Geocarto International, 29(3), 268–292.CrossRefGoogle Scholar
  44. Hatger, C., & Brenner, C. (2003). Extraction of road geometry parameters from laser scanning and existing databases. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(3/W13), 225–230.Google Scholar
  45. He, Y., Song, Z., & Liu, Z. (2017). Updating highway asset inventory using airborne LiDAR. Measurement, 104, 132–141.CrossRefGoogle Scholar
  46. Hernández, J., & Marcotegui, B. (2009, September). Filtering of artifacts and pavement segmentation from mobile lidar data. In ISPRS Workshop Laserscanning 2009.Google Scholar
  47. Herumurti, D., Uchimura, K., Koutaki, G., & Uemura, T. (2013). Urban road extraction based on Hough transform and region growing. Paper presented at the 2013 19th Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV).Google Scholar
  48. Hirpa, D., Hare, W., Lucet, Y., Pushak, Y., & Tesfamariam, S. (2016). A bi-objective optimization framework for three-dimensional road alignment design. Transportation Research Part C: Emerging Technologies, 65, 61–78.CrossRefGoogle Scholar
  49. Holgado-Barco, A., Gonzalez-Aguilera, D., Arias-Sanchez, P., & Martinez-Sanchez, J. (2014). An automated approach to vertical road characterisation using mobile LiDAR systems: Longitudinal profiles and cross-sections. ISPRS Journal of Photogrammetry and Remote Sensing, 96, 28–37.CrossRefGoogle Scholar
  50. Holgado-Barco, A., Riveiro, B., González-Aguilera, D., & Arias, P. (2017). Automatic inventory of road cross-sections from mobile laser scanning system. Computer-Aided Civil and Infrastructure Engineering, 32(1), 3–17.CrossRefGoogle Scholar
  51. Hu, X., Tao, C. V., & Hu, Y. (2004). Automatic road extraction from dense urban area by integrated processing of high resolution imagery and lidar data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 35(B3). Istanbul, Turkey.Google Scholar
  52. Hu, X., Li, Y., Shan, J., Zhang, J., & Zhang, Y. (2014). Road centerline extraction in complex urban scenes from LiDAR data based on multiple features. IEEE Transactions on Geoscience and Remote Sensing, 52(11), 7448–7456.CrossRefGoogle Scholar
  53. Huang, C.-L., & Dun, J.-F. (2008). A distributed PSO–SVM hybrid system with feature selection and parameter optimization. Applied Soft Computing, 8(4), 1381–1391.CrossRefGoogle Scholar
  54. Ibrahim, S., & Lichti, D. (2012). Curb-based street floor extraction from mobile terrestrial LiDAR point cloud. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 39, B5.Google Scholar
  55. Idrees, M. O., & Pradhan, B. (2016). A decade of modern cave surveying with terrestrial laser scanning: A review of sensors, method and application development. International Journal of Speleology, 45(1), 71–88.Google Scholar
  56. Idrees, M. O., Pradhan, B., Buchroithner, M., Shafri, H. Z. M., & Khairunniza-Bejo, S. (2016). Assessing the transferability of a hybrid Taguchi-objective function method to optimize image segmentation for detecting and counting cave roosting birds using terrestrial laser scanning data. Journal of Applied Remote Sensing, 10(3), 035023.Google Scholar
  57. Idrees, M. O., & Pradhan, B. (2018). Geostructural stability assessment of cave using rock surface discontinuity extracted from terrestrial laser scanning point cloud. Journal of Rock Mechanics and Geotechnical Engineering, 10(3), 534–544.Google Scholar
  58. Im, J., Jensen, J. R., & Hodgson, M. E. (2008). Object-based land cover classification using high-posting-density LiDAR data. GIScience & Remote Sensing, 45(2), 209–228.CrossRefGoogle Scholar
  59. Jaakkola, A., Hyyppä, J., Hyyppä, H., & Kukko, A. (2008). Retrieval algorithms for road surface modelling using laser-based mobile mapping. Sensors, 8(9), 5238–5249.CrossRefGoogle Scholar
  60. Jabari, S., & Zhang, Y. (2013). Very high resolution satellite image classification using fuzzy rule-based systems. Algorithms, 6(4), 762–781.CrossRefGoogle Scholar
  61. Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2014). Optimization of landslide conditioning factors using very high-resolution airborne laser (LiDAR) scanning data at catchment scale. Remote Sensing of Environment, 152, 150–165.  https://doi.org/10.1016/j.rse.2014.05.013.CrossRefGoogle Scholar
  62. Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2015). Manifestation of LiDAR derived parameters in spatial prediction of landslides using a novel ensemble evidential belief functions and support vector machine models in GIS. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(2), 674–689.  https://doi.org/10.1109/JSTARS.2014.2341276.CrossRefGoogle Scholar
  63. Kang, M.-W., Jha, M. K., & Schonfeld, P. (2012). Applicability of highway alignment optimization models. Transportation Research Part C: Emerging Technologies, 21(1), 257–286.  https://doi.org/10.1016/j.trc.2011.09.006.CrossRefGoogle Scholar
  64. Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of Computer Vision, 1(4), 321–331.CrossRefGoogle Scholar
  65. Kumar, P., McElhinney, C. P., & McCarthy, T. (2011, June). Utilizing the terrestrial laser scanning data attributes for road edge extraction by implementing the GVF snake model. In 7th International Symposium on Mobile Mapping Technology.Google Scholar
  66. Kumar, P., McElhinney, C. P., Lewis, P., & McCarthy, T. (2013). An automated algorithm for extracting road edges from terrestrial mobile LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 85, 44–55.CrossRefGoogle Scholar
  67. Kumar, P., McElhinney, C. P., Lewis, P., & McCarthy, T. (2014). Automated road markings extraction from mobile laser scanning data. International Journal of Applied Earth Observation and Geoinformation, 32, 125–137.  https://doi.org/10.1016/j.jag.2014.03.023.CrossRefGoogle Scholar
  68. Kumar, P., Lewis, P., & McCarthy, T. (2017). The potential of active contour models in extracting roads from mobile laser scanning data.‏Google Scholar
  69. Lam, J., Kusevic, K., Mrstik, P., Harrap, R., & Greenspan, M. (2010, May). Urban scene extraction from mobile ground based lidar data. In Proceedings of 3DPVT (pp. 1–8).‏Google Scholar
  70. Lary, D. J., Alavi, A. H., Gandomi, A. H., & Walker, A. L. (2015). Machine learning in geosciences and remote sensing. Geoscience Frontiers.  https://doi.org/10.1016/j.gsf.2015.07.003
  71. Li, P., & He, J. (2016). Geometric design safety estimation based on tire–road side friction. Transportation Research Part C: Emerging Technologies, 63, 114–125.  https://doi.org/10.1016/j.trc.2015.12.009.CrossRefGoogle Scholar
  72. Li, M., Stein, A., Bijker, W., & Zhan, Q. (2016). Region-based urban road extraction from VHR satellite images using binary partition tree. International Journal of Applied Earth Observation and Geoinformation, 44, 217–225.CrossRefGoogle Scholar
  73. Lin, X., Zhang, J., Liu, Z., Shen, J., & Duan, M. (2011). Semi-automatic extraction of road networks by least squares interlaced template matching in urban areas. International Journal of Remote Sensing, 32(17), 4943–4959.  https://doi.org/10.1080/01431161.2010.493565.CrossRefGoogle Scholar
  74. Matkan, A. A., Hajeb, M., & Sadeghian, S. (2014). Road extraction from lidar data using support vector machine classification. Photogrammetric Engineering & Remote Sensing, 80(5), 409–422.  https://doi.org/10.14358/pers.80.5.409.CrossRefGoogle Scholar
  75. McElhinney, C. P., Kumar, P., Cahalane, C., & McCarthy, T. (2010, June). Initial results from European road safety inspection (EURSI) mobile mapping project. In ISPRS Commission V Technical Symposium (pp. 440–445).‏Google Scholar
  76. Mena, J. B. (2003). State of the art on automatic road extraction for GIS update: A novel classification. Pattern Recognition Letters, 24(16), 3037–3058.  https://doi.org/10.1016/s0167-8655(03)00164-8.CrossRefGoogle Scholar
  77. Mezaal, M. R., & Pradhan, B. (2017). Data mining-aided automatic landslide detection using airborne laser scanning data in densely forested tropical areas. Korean Journal of Remote Sensing, 34(1), 45–74.  https://doi.org/10.7780/kjrs.2018.34.1.4.CrossRefGoogle Scholar
  78. Mezaal, M. R., & Pradhan, B. (2018). An improved algorithm for identifying shallow and deep-seated landslides in dense tropical forest from airborne laser scanning data. CATENA, 167, 147–159.  https://doi.org/10.1016/j.catena.2018.04.038.CrossRefGoogle Scholar
  79. Mezaal, M. R., Pradhan, B., & Rizeei, H. M. (2018). Improving landslide detection from airborne laser scanning data using optimized Dempster–Shafer. Remote Sensing, 10(7), 1029.  https://doi.org/10.3390/rs10071029.CrossRefGoogle Scholar
  80. Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259.CrossRefGoogle Scholar
  81. Munoz, D., Vandapel, N., & Hebert, M. (2008). Directional associative Markov network for 3-d point cloud classification.‏Google Scholar
  82. Oude Elberink, S. J., & Vosselman, G. (2009). 3D information extraction from laser point clouds covering complex road junctions. The Photogrammetric Record, 24(125), 23–36.CrossRefGoogle Scholar
  83. Poullis, C., & You, S. (2010). Delineation and geometric modeling of road networks. ISPRS Journal of Photogrammetry and Remote Sensing, 65(2), 165–181.CrossRefGoogle Scholar
  84. Pradhan, B., Jebur, M. N., Shafri, H. Z. M., & Tehrany, M. S. (2016). Data fusion technique using wavelet transform and Taguchi methods for automatic landslide detection from airborne laser scanning data and QuickBird satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 54(3), 1610–1622.  https://doi.org/10.1109/TGRS.2015.2484325.CrossRefGoogle Scholar
  85. Quackenbush, L. J., Im, I., & Zuo, Y. (2013). Road extraction: A review of LiDAR-focused studies. Remote Sensing of Natural Resources, 155–169.Google Scholar
  86. Rathinam, S., Kim, Z. W., & Sengupta, R. (2008). Vision-based monitoring of locally linear structures using an unmanned aerial vehicle. Journal of Infrastructure Systems, 14(1), 52–63.Google Scholar
  87. Samadzadegan, F., & Bigdeli, B. (2009). Combining multiple classifiers for automatic road extraction from lidar data.Google Scholar
  88. Sameen, M. I., & Pradhan, B. (2017a). A two-stage optimization strategy for fuzzy object-based analysis using airborne LiDAR and high-resolution orthophotos for urban road extraction. Journal of Sensors, 2017, 1–17.Google Scholar
  89. Sameen, M. I., & Pradhan, B. (2017b). Assessment of the effects of expressway geometric design features on the frequency of accident crash rates using high-resolution laser scanning data and GIS. Geomatics, Natural Hazards and Risk, 8(2), 733–747.  https://doi.org/10.1080/19475705.2016.1265012.CrossRefGoogle Scholar
  90. Sameen, M. I., & Pradhan, B. (2017c). A simplified semi-automatic technique for highway extraction from high-resolution airborne LiDAR data and orthophotos. Journal of the Indian Society of Remote Sensing, 45(3), 395–405.  https://doi.org/10.1007/s12524-016-0610-5.CrossRefGoogle Scholar
  91. Sameen, M. I., Pradhan, B., Shafri, H. Z., Mezaal, M. R., & bin Hamid, H. (2017). Integration of ant colony optimization and object-based analysis for LiDAR data classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5), 2055–2066.Google Scholar
  92. Sebari, I., & He, D.-C. (2013). Automatic fuzzy object-based analysis of VHSR images for urban objects extraction. ISPRS Journal of Photogrammetry and Remote Sensing, 79, 171–184.CrossRefGoogle Scholar
  93. Semeida, A. M. (2015). Derivation of level of service by artificial neural networks at horizontal curves: A case study in Egypt. European Transport Research Review, 7(1).  https://doi.org/10.1007/s12544-014-0152-2
  94. Serra, J. (1983). Image analysis and mathematical morphology. Academic Press, Inc..Google Scholar
  95. Singh, P. P., & Garg, R. D. (2013). Automatic road extraction from high resolution satellite image using adaptive global thresholding and morphological operations. Journal of the Indian Society of Remote Sensing, 41(3), 631–640.Google Scholar
  96. Song, M., & Civco, D. (2004). Road extraction using SVM and image segmentation. Photogrammetric Engineering & Remote Sensing, 70(12), 1365–1371.CrossRefGoogle Scholar
  97. Ton, J., Jain, A. K., Enslin, W. R., & Hudson, W. D. (1989). Automatic road identification and labeling in Landsat 4 TM images. Photogrammetria, 43(5), 257–276.CrossRefGoogle Scholar
  98. Vosselman, G. (2009, September). Advanced point cloud processing. In Photogrammetric week (Vol. 9, pp. 137–146).‏Google Scholar
  99. Vosselman, G., & Zhou, L. (2009). Detection of curbstones in airborne laser scanning data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38, 111–116.Google Scholar
  100. Wang, G., Zhang, Y., Li, J., & Song, P. (2011). 3D road information extraction from LIDAR data fused with aerial-images. Paper presented at the 2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services (ICSDM).Google Scholar
  101. Wang, J., González-Jorge, H., Lindenbergh, R., Arias-Sánchez, P., & Menenti, M. (2013). Automatic estimation of excavation volume from laser mobile mapping data for mountain road widening. Remote Sensing, 5(9), 4629–4651.CrossRefGoogle Scholar
  102. Wang, W., Yang, N., Zhang, Y., Wang, F., Cao, T., & Eklund, P. (2016). A review of road extraction from remote sensing images. Journal of traffic and transportation engineering (english edition), 3(3), 271–282.Google Scholar
  103. White, R. A., Dietterick, B. C., Mastin, T., & Strohman, R. (2010). Forest roads mapped using LiDAR in steep forested terrain. Remote Sensing, 2(4), 1120–1141.  https://doi.org/10.3390/rs2041120.CrossRefGoogle Scholar
  104. Xiao, L., Wang, R., Dai, B., Fang, Y., Liu, D., & Wu, T. (2017). Hybrid conditional random field based camera-LIDAR Fusion for road detection. Information Sciences.‏Google Scholar
  105. Xu, C., & Prince, J. L. (1997). Gradient vector flow: A new external force for snakes. Paper presented at the 1997 Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997.Google Scholar
  106. Xu, S., Wang, R., & Zheng, H. (2017). Road curb extraction from mobile LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing, 55(2), 996–1009.CrossRefGoogle Scholar
  107. Yan, G., Mas, J. F., Maathuis, B. H. P., Xiangmin, Z., & Van Dijk, P. M. (2006). Comparison of pixel-based and object-oriented image classification approaches—A case study in a coal fire area, Wuda, Inner Mongolia, China. International Journal of Remote Sensing, 27(18), 4039–4055.CrossRefGoogle Scholar
  108. Yan, W. Y., Shaker, A., & El-Ashmawy, N. (2015). Urban land cover classification using airborne LiDAR data: A review. Remote Sensing of Environment, 158, 295–310.  https://doi.org/10.1016/j.rse.2014.11.001.CrossRefGoogle Scholar
  109. Yang, B., Fang, L., & Li, J. (2013). Semi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 79, 80–93.CrossRefGoogle Scholar
  110. Yoon, J., & Crane, C. D. (2009, August). Evaluation of terrain using LADAR data in urban environment for autonomous vehicles and its application in the DARPA urban challenge. In 2009 ICCAS-SICE (pp. 641–646). IEEE.Google Scholar
  111. Youn, J., Bethel, J. S., Mikhail, E. M., & Lee, C. (2008). Extracting urban road networks from high-resolution true orthoimage and lidar. Photogrammetric Engineering & Remote Sensing, 74(2), 227–237.CrossRefGoogle Scholar
  112. Yuan, X., Zhao, C. X., Cai, Y. F., Zhang, H., & Chen, D. B. (2008, December). Road-surface abstraction using ladar sensing. In 10th International Conference on Control, Automation, Robotics and Vision, 2008. ICARCV 2008 (pp. 1097–1102). IEEE.‏Google Scholar
  113. Zhang, W. (2010, June). Lidar-based road and road-edge detection. In 2010 IEEE Intelligent Vehicles Symposium (IV) (pp. 845–848). IEEE.‏Google Scholar
  114. Zhang, Q., & Couloigner, I. (2007). Accurate centerline detection and line width estimation of thick lines using the radon transform. IEEE Transactions on Image Processing, 16(2), 310–316.MathSciNetCrossRefGoogle Scholar
  115. Zhang, Y., & Yan, L. (2007). Road surface modeling and representation from point cloud based on fuzzy clustering. Geo-spatial Information Science, 10(4), 276–281.  https://doi.org/10.1007/s11806-007-0106-0.MathSciNetCrossRefGoogle Scholar
  116. Zhao, J., You, S., & Huang, J. (2011, October). Rapid extraction and updating of road network from airborne LiDAR data. In 2011 IEEE applied imagery pattern recognition workshop (AIPR) (pp. 1–7). IEEE.Google Scholar
  117. Zhang, J., Duan, M., Yan, Q., & Lin, X. (2014). Automatic vehicle extraction from airborne LiDAR data using an object-based point cloud analysis method. Remote Sensing, 6(9), 8405–8423.CrossRefGoogle Scholar
  118. Zhao, J., & You, S. (2012). Road network extraction from airborne LiDAR data using scene context. Paper presented at the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Google Scholar
  119. Zhou, W. (2013). An object-based approach for urban land cover classification: Integrating LiDAR height and intensity data. IEEE Geoscience and Remote Sensing Letters, 10(4), 928–931.CrossRefGoogle Scholar
  120. Zhou, L., & Vosselman, G. (2012). Mapping curbstones in airborne and mobile laser scanning data. International Journal of Applied Earth Observation and Geoinformation, 18, 293–304.CrossRefGoogle Scholar
  121. Zhou, H., Kong, H., Wei, L., Creighton, D., & Nahavandi, S. (2015). Efficient road detection and tracking for unmanned aerial vehicle. IEEE transactions on intelligent transportation systems, 16(1), 297–309.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS)University of Technology SydneySydneyAustralia
  2. 2.Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS)University of Technology SydneySydneyAustralia

Personalised recommendations