Advertisement

Forecasting Severity of Motorcycle Crashes Using Transfer Learning

  • Biswajeet PradhanEmail author
  • Maher Ibrahim Sameen
Chapter
Part of the Advances in Science, Technology & Innovation book series (ASTI)

Abstract

Road traffic accident is a common type of disaster worldwide. Regardless of the road status, driver education or strict implementation of driving rules, accidents are bound to occur. Malaysia is no exception to this unfortunate disaster.

References

  1. Abdelwahab, H., & Abdel-Aty, M. (2001). Development of artificial neural network models to predict driver injury severity in traffic accidents at signalized intersections. Transportation Research Record: Journal of the Transportation Research Board, 1746, 6–13.CrossRefGoogle Scholar
  2. Akar, Ö., & Güngör, O. (2013). Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2).Google Scholar
  3. Alkheder, S., Taamneh, M., & Taamneh, S. (2017). Severity prediction of traffic accident using an artificial neural network. Journal of Forecasting, 36(1), 100–108.MathSciNetCrossRefGoogle Scholar
  4. Bayer, J., Osendorfer, C., Korhammer, D., Chen, N., Urban, S., & van der Smagt, P. (2013). On fast dropout and its applicability to recurrent networks. arXiv preprint arXiv:1311.0701.
  5. Chollet, F. (2015). Keras.Google Scholar
  6. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.
  7. Delen, D., Sharda, R., & Bessonov, M. (2006). Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks. Accident Analysis and Prevention, 38(3), 434–444.CrossRefGoogle Scholar
  8. Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., & Darrell, T. (2015). Long-term recurrent convolutional networks for visual recognition and description. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2625–2634).Google Scholar
  9. Duan, Y., Lv, Y., Liu, Y. L., & Wang, F. Y. (2016). An efficient realization of deep learning for traffic data imputation. Transportation Research Part C: Emerging Technologies, 72, 168–181.CrossRefGoogle Scholar
  10. El-Basyouny, K., & Sayed, T. (2006). Comparison of two negative binomial regression techniques in developing accident prediction models. Transportation Research Record: Journal of the Transportation Research Board, 1950, 9–16.CrossRefGoogle Scholar
  11. Graves, A., Mohamed, A. R., & Hinton, G. (2013, May). Speech recognition with deep recurrent neural networks. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 6645–6649). IEEE.‏Google Scholar
  12. Han, L., Luo, S., Yu, J., Pan, L., & Chen, S. (2015). Rule extraction from support vector machines using ensemble learning approach: an application for diagnosis of diabetes. IEEE Journal of Biomedical and Health Informatics, 19(2), 728–734.CrossRefGoogle Scholar
  13. Harnen, S., Umar, R. R., Wong, S. V., & Hashim, W. W. (2006). Motorcycle accident prediction model for junctions on urban roads in Malaysia. Advances in Transportation Studies, 8, 31–40.Google Scholar
  14. Hashmienejad, S. H. A., & Hasheminejad, S. M. H. (2017). Traffic accident severity prediction using a novel multi-objective genetic algorithm. International Journal of Crashworthiness, 1–16.‏Google Scholar
  15. Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.‏
  16. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.CrossRefGoogle Scholar
  17. Hong, H., Pradhan, B., Jebur, M. N., Bui, D. T., Xu, C., & Akgun, A. (2016). Spatial prediction of landslide hazard at the Luxi area (China) using support vector machines. Environmental Earth Sciences, 75(1), 40.CrossRefGoogle Scholar
  18. Immitzer, M., Atzberger, C., & Koukal, T. (2012). Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data. Remote Sensing, 4(9), 2661–2693.CrossRefGoogle Scholar
  19. Kingma, D., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.‏
  20. Lawrence, S., Giles, C. L., & Fong, S. (2000). Natural language grammatical inference with recurrent neural networks. IEEE Transactions on Knowledge and Data Engineering, 12(1), 126–140.CrossRefGoogle Scholar
  21. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.CrossRefGoogle Scholar
  22. Liow. (2016, January 28). Retrieved April 07, 2017, from http://www.themalaymailonline.com.
  23. Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019.‏
  24. Long, M., Wang, J., & Jordan, M. I. (2016). Deep transfer learning with joint adaptation networks. arXiv preprint arXiv:1605.06636.‏
  25. Lv, Y., Duan, Y., Kang, W., Li, Z., & Wang, F. Y. (2015). Traffic flow prediction with big data: a deep learning approach. IEEE Transactions on Intelligent Transportation Systems, 16(2), 865–873.Google Scholar
  26. Manan, M. M. A., Jonsson, T., & Várhelyi, A. (2013). Development of a safety performance function for motorcycle accident fatalities on Malaysian primary roads. Safety Science, 60, 13–20.CrossRefGoogle Scholar
  27. Manan, M. M. A., & Várhelyi, A. (2012). Motorcycle fatalities in Malaysia. IATSS Research, 36(1), 30–39.CrossRefGoogle Scholar
  28. Olden, J. D., & Jackson, D. A. (2002). Illuminating the “black box”: A randomization approach for understanding variable contributions in artificial neural networks. Ecological Modelling, 154(1), 135–150.CrossRefGoogle Scholar
  29. Oord, A. V. D., Kalchbrenner, N., & Kavukcuoglu, K. (2016). Pixel recurrent neural networks. arXiv preprint arXiv:1601.06759.‏
  30. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … & Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.‏Google Scholar
  31. Pei, X., Wong, S. C., & Sze, N. N. (2011). A joint-probability approach to crash prediction models. Accident Analysis and Prevention, 43(3), 1160–1166.CrossRefGoogle Scholar
  32. Priyanka, A., & Sathiyakumari, K. (2014). A comparative study of classification algorithm using accident data. International Journal of Computer Science & Engineering Technology (IJCSET), 5(10), 1018–1023.Google Scholar
  33. Rahman, N. H., Rainis, R., Noor, S. H., & Mohamad, S. M. S. (2016). The Buffering analysis to identify common geographical factors within the vicinity of severe injury related to motor vehicle crash in Malaysia. World Journal of Emergency Medicine, 7(4), 278.CrossRefGoogle Scholar
  34. Raschka, S. (2015). Python machine learning. Packt Publishing Ltd.‏Google Scholar
  35. Sameen, M. I., & Pradhan, B. (2017a). A two-stage optimization strategy for fuzzy object-based analysis using airborne LiDAR and high-resolution orthophotos for urban road extraction. Journal of Sensors.‏Google Scholar
  36. Sameen, M. I., & Pradhan, B. (2017b). Assessment of the effects of expressway geometric design features on the frequency of accident crash rates using high-resolution laser scanning data and GIS. Geomatics, Natural Hazards and Risk, 8(2), 733–747.  https://doi.org/10.1080/19475705.2016.1265012.CrossRefGoogle Scholar
  37. Sameen, M. I., & Pradhan, B. (2017c). A simplified semi-automatic technique for highway extraction from high-resolution airborne LiDAR data and orthophotos. Journal of the Indian Society of Remote Sensing, 45(3), 395–405.  https://doi.org/10.1007/s12524-016-0610-5.CrossRefGoogle Scholar
  38. Sameen, M. I., Pradhan, B., Shafri, H. Z. M., Mezaal, M. R., & Hamid, H. (2016). Integration of ant colony optimization and object-based analysis for LiDAR data classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5), 2055–2066.  https://doi.org/10.1109/JSTARS.2017.2650956.CrossRefGoogle Scholar
  39. Sapuan, M. S., Razali, A. M., & Zamzuri, Z. H. (2016). Modeling motorcycle road accidents with traffic offenses at several potential locations using negative binomial regression model in Malaysia. International Journal of Applied Mathematics and Statistics™, 54(3), 104–114.‏Google Scholar
  40. Shin, H. C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., et al. (2016). Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Transactions on Medical Imaging, 35(5), 1285–1298.CrossRefGoogle Scholar
  41. Sukor, N. S. A., Tarigan, A. K., & Fujii, S. (2016). Analysis of correlations between psychological factors and self-reported behavior of motorcyclists in Malaysia, depending on self-reported usage of different types of motorcycle facility. Transportation Research Part F: Traffic Psychology and Behaviour.‏Google Scholar
  42. Sutskever, I., Martens, J., & Hinton, G. E. (2011). Generating text with recurrent neural networks. In Proceedings of the 28th International Conference on Machine Learning (ICML-11) (pp. 1017–1024).‏Google Scholar
  43. Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2014). Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, 332–343.CrossRefGoogle Scholar
  44. Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4(2).‏Google Scholar
  45. Wang, J., Zheng, Y., Li, X., Yu, C., Kodaka, K., & Li, K. (2015). Driving risk assessment using near-crash database through data mining of tree-based model. Accident Analysis and Prevention, 84, 54–64.CrossRefGoogle Scholar
  46. Zeng, Q., & Huang, H. (2014). A stable and optimized neural network model for crash injury severity prediction. Accident Analysis and Prevention, 73, 351–358.CrossRefGoogle Scholar
  47. Zur, R. M., Jiang, Y., Pesce, L. L., & Drukker, K. (2009). Noise injection for training artificial neural networks: A comparison with weight decay and early stopping. Medical Physics, 36(10), 4810–4818.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS)University of Technology SydneySydneyAustralia
  2. 2.Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS)University of Technology SydneySydneyAustralia

Personalised recommendations