Advertisement

Developmental Prospects of Boriding

  • Michal Kulka
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

All the types of microstructure of surface layers with boron were classified. The boriding techniques, resulting in the formation of these types of microstructure, were specified. The developmental prospects of the boriding process were formulated by indicating the most attractive techniques, taking into account their most important features and possibility of their use for boriding of a wide range of materials.

References

  1. Ballhause P, Wolf GK (1989) The Influence of temperature on the performance of ion-implanted metal-forming tools. Mater Sci Eng A 115:273–277CrossRefGoogle Scholar
  2. Bataev IA, Bataev AA, Golkovski MG, Krivizhenko DS, Losinskaya AA, Lenivtseva OG (2013) Structure of surface layers produced by non-vacuum electron beam boriding. Appl Surf Sci 284:472–481CrossRefGoogle Scholar
  3. Bourithis L, Papaefthymiou S, Papadimitriou GD (2002) Plasma transferred arc boriding of a low carbon steel: microstructure and wear properties. Appl Surf Sci 200:203–218CrossRefGoogle Scholar
  4. Davis JA, Wilbur PJ, Williamson DL, Wei R, Vajo JJ (1998) Ion implantation boriding of iron and AISI M2 steel using a high-current density, low energy, broad-beam ion source. Surf Coat Technol 103–104:52–57CrossRefGoogle Scholar
  5. Euh K, Lee J, Lee S, Koo Y, Kim NJ (2001) Microstructural modification and hardness improvement in boride/Ti-6Al-4V surface-alloyed materials fabricated by high-energy electron beam irradiation. Scripta Mater 45:1–6CrossRefGoogle Scholar
  6. Filip R, Sieniawski J, Pleszakov E (2006) Formation of surface layers on Ti–6Al–4V titanium alloy by laser alloying. Surf Eng 22(1):53–57CrossRefGoogle Scholar
  7. Frąckowiak M, Makuch N, Dziarski P, Kulka M, Taktak S (2018) Fracture toughness of plasma paste-borided layers produced on nickel-based alloys. Lect Notes Mech Eng 201519:923–932CrossRefGoogle Scholar
  8. Kholmetskii AL, Anischik VM, Uglov VV, Rusalsky DP, Kuleshov AK, Fedotova JA (2003) CEMS investigations of AISI M2 steel after ion implantation by nitrogen, boron and carbon. Vacuum 69:521–527CrossRefGoogle Scholar
  9. Kulka M (2009) The gradient boride layers formed by borocarburizing and laser surface modification. Dissertation No. 428, Publishing House of Poznan University of Technology, Poznan, ISBN 978-83-7143-821-9Google Scholar
  10. Kulka M, Pertek A (2003a) Microstructure and properties of borided 41Cr4 steel after laser surface modification with re-melting. Appl Surf Sci 214:278–288CrossRefGoogle Scholar
  11. Kulka M, Pertek A (2003b) The importance of carbon content beneath iron borides after boriding of chromium and nickel-based low-carbon steel. Appl Surf Sci 214:161–171CrossRefGoogle Scholar
  12. Kulka M, Pertek A (2003c) Characterization of complex (B-C-N) diffusion layers formed on chromium and nickel-based low-carbon steel. Appl Surf Sci 218:113–122CrossRefGoogle Scholar
  13. Kulka M, Makuch N, Pertek A, Małdziński L (2013a) Simulation of the growth kinetics of boride layers formed on Fe during gas boriding in H2-BCl3 atmosphere. J Solid State Chem 199:196–203CrossRefGoogle Scholar
  14. Kulka M, Dziarski P, Makuch N, Piasecki A, Miklaszewski A (2013b) Microstructure and properties of laser-borided Inconel 600-alloy. Appl Surf Sci 284:757–771CrossRefGoogle Scholar
  15. Kulka M, Makuch N, Dziarski P, Piasecki A, Miklaszewski A (2014) Microstructure and properties of laser-borided composite layers formed on commercially pure titanium. Opt Laser Technol 56:409–424CrossRefGoogle Scholar
  16. Kulka M, Mikolajczak D, Makuch N, Dziarski P, Miklaszewski A (2016) Wear resistance improvement of austenitic 316L steel by laser alloying with boron. Surf Coat Technol 291:292–313CrossRefGoogle Scholar
  17. Kusmanov SA, Naumov AR, Tambovskiy IV, Belkin PN (2015) Anode plasma electrolytic saturation of low-carbon steel with carbon, nitrogen, boron, and sulfur. Lett Mater 5(1):35–38CrossRefGoogle Scholar
  18. Kusmanov SA, Tambovskiy IV, Sevostyanova VS, Savushkina SV, Belkin PN (2016) Anode plasma electrolytic boriding of medium carbon steel. Surf Coat Technol 291:334–341CrossRefGoogle Scholar
  19. Kusmanov SA, Tambovskiy IV, Naumov AR, D’yakov IG, Kusmanova IA, Belkin PN (2017) Anodic electrolytic-plasma borocarburizing of low-carbon steel. Prot Metals Phys Chem Surf 53(3):488–494CrossRefGoogle Scholar
  20. Lou DC, Solberg JK, Akselsen OM, Dahl N (2009) Microstructure and property investigation of paste boronized pure nickel and Nimonic 90 superalloy. Mater Chem Phys 115:239–244CrossRefGoogle Scholar
  21. Makuch N, Kulka M, Dziarski P, Przestacki D (2014) Laser surface alloying of commercially pure titanium with boron and carbon. Opt Lasers Eng 57:64–81CrossRefGoogle Scholar
  22. Makuch N, Kulka M, Piasecki A (2015) The effects of chemical composition of Nimonic 80A-alloy on the microstructure and properties of gas-borided layer. Surf Coat Technol 276:440–455CrossRefGoogle Scholar
  23. Makuch N, Kulka M, Keddam M, Taktak S, Ataibis V, Dziarski P (2017) Growth kinetics and some mechanical properties of two-phase boride layers produced on commercially pure titanium during plasma paste boriding. Thin Solid Films 626:25–37CrossRefGoogle Scholar
  24. Miklaszewski A, Jurczyk MU, Jurczyk M (2013) Microstructural development of Ti-B alloyed layer for hard tissue applications. J Mater Sci Technol 29(6):565–572CrossRefGoogle Scholar
  25. Mikołajczak D, Piasecki A, Kulka M, Makuch N (2016) Laser alloying of 316L steel with boron using CaF2 self-lubricating addition. Inżynieria Materiałowa (Mater Eng) 1(209):4–9Google Scholar
  26. Pertek A (2001) Kształtowanie struktury i właściwości warstw borków żelaza otrzymywanych w procesie borowania gazowego (The structure formation and the properties of boronized layers obtained in gaseous boriding process) Dissertation No. 365, Publishing House of Poznan University of Technology, Poznan, ISBN 83-7143-262-2 (in Polish)Google Scholar
  27. Piasecki A, Kulka M, Kotkowiak M (2016) Wear resistance improvement of 100CrMnSi6-4 bearing steel by laser boriding using CaF2 self-lubricating addition. Tribol Int 97:73–191CrossRefGoogle Scholar
  28. Piasecki A, Kotkowiak M, Kulka M (2017) Self-lubricating surface layers produced using laser alloying of bearing steel. Wear 376–377:993–1008CrossRefGoogle Scholar
  29. Reuther H, Rauschenbach B, Richter E (1988) Ion implantation in metals-structure, investigations and applications. Vacuum 38(11):967–971CrossRefGoogle Scholar
  30. Shulov VA (1994) Effect of ion implantation on the chemical composition and structure of surface layers of heat-resistant alloys. Russ Phys J 37(5):462–477CrossRefGoogle Scholar
  31. Soltani-Farshi M, Baumann H, Rück D, Richter E, Kreissig U, Bethge K (1998) Content of hydrogen in boron-, carbon-, nitrogen-, oxygen-, fluorine and neon-implanted titanium. Surf Coat Technol 103–104:299–303CrossRefGoogle Scholar
  32. Taheri P, Dehghanian C, Aliofkhazraei M, Sabour Rouhaghdam A (2007) Nanocrystalline structure produced by complex surface treatments: plasma electrolytic nitrocarburizing, boronitriding, borocarburizing, and borocarbonitriding. Plasma Processes Polym 4:S721–S727CrossRefGoogle Scholar
  33. Uglov VV, Kholmetskii AL, Kuleshov AK, Rusalsky DP, Rumyanceva IN, Wei R, Vajo JJ (2002) Phase transformation of high speed steel after sequential nitrogen and boron high current density ions implantation. Surf Coat Technol 158–159:349–355CrossRefGoogle Scholar
  34. Wang B, Xue W, Wu J, Jin X, Hua M, Wu Z (2013a) Characterization of surface hardened layers on Q235 low-carbon steel treated by plasma electrolytic borocarburizing. J Alloy Compd 578:162–169CrossRefGoogle Scholar
  35. Wang B, Jin X, Xue W, Wu Z, Du J, Wu J (2013b) High temperature tribological behaviors of plasma electrolytic borocarburized Q235 low-carbon steel. Surf Coat Technol 232:142–149CrossRefGoogle Scholar
  36. Wypych A (2012) Wytwarzanie metodami spawalniczymi i badanie warstw wierzchnich o właściwościach żaroodpornych i żarowytrzymałych na powierzchni wybranych stali (Formation of heat-resistant and high-temperature creep resisting surface layers on the surface of selected steels by welding techniques and their investigation), In Polish, research report, unpublished work, Poznan University of TechnologyGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Materials Science and EngineeringPoznań University of TechnologyPoznańPoland

Personalised recommendations