Trends in Physical Techniques of Boriding

  • Michal Kulka
Part of the Engineering Materials book series (ENG.MAT.)


All the specified physical techniques of boriding, i.e. carried out under glow discharge conditions, boron ion implantation and high-energy techniques were characterized and compared in this chapter based on the available literature data. The technological aspects of boriding processes were analyzed, taking into consideration the advantages and disadvantages of each method. The effects of the boriding methods on the microstructure of borided materials were shown. The mechanism of formation of active boron atoms or ions and the phenomena during re-melting of alloying material together with the substrate were described. The three main groups of physical techniques of boriding were specified: boriding under glow discharge conditions, boriding by ion implantation and the high-energy methods of boriding. The most intensively developed physical techniques were put in the boxes drawn in a broken line in Fig.  2.1. They were described in more detail, taking into account the current trends in boronizing. Hence, the most attention was devoted to the boriding under glow discharge conditions, especially plasma gas (or paste) boriding, and surface alloying with boron, especially, laser (or plasma) surface alloying.


  1. Aich S, Ravi Chandran KS (2002) TiB whisker coating on titanium surfaces by solid-state diffusion: synthesis, microstructure, and mechanical properties. Metall Mater Trans A 33A:3489–3498Google Scholar
  2. Aksenov AF, Fedorenko VK, Klimenko VS, Ivashchenko RK (1991) Structure, mechanical properties, and special features of failure of nickel-based detonation coatings. Powder Metall Metal Ceram (Poroshkovaya Metallurgiya) 30(7):576–583Google Scholar
  3. Aliev MKH, Sabour A (2007) Pulsed nanocrystalline plasma electrolytic boriding as a novel method for corrosion protection of CP–Ti (part 1: different frequency and duty cycle). Bull Mater Sci 30(6):601–605CrossRefGoogle Scholar
  4. Aliofkhazraei M, Hassanzadeh-Tabrizi SA, Sabour Rouhaghdam A, Heydarzadeh A (2009) Nanocrystalline ceramic coating on γ-TiAl by bipolar plasma electrolysis (effect of frequency, time and cathodic/anodic duty cycle). Ceram Int 35:2053–2059CrossRefGoogle Scholar
  5. Alleg S, Ibrir M, Fenineche NE, Bensalem R, Suñol JJ (2010) Microstructure and magnetic properties of HVOF thermally sprayed Fe75Si15B10 coatings. Surf Coat Technol 205:281–286CrossRefGoogle Scholar
  6. Alleg S, Hamza L, Ibrir M, Souilah S, Tebib W, Fenineche NE, Greneche JM (2015) Microstructural, hyperfine, and magnetic properties of FeSiBCuNb deposits. J Supercond Novel Magn 28:2431–2439CrossRefGoogle Scholar
  7. Amushahi MH, Ashrafizadeh F, Shamanian M (2010) Characterization of boride-rich hardfacing on carbon steel by arc spray and GMAW processes. Surf Coat Technol 204:2723–2728CrossRefGoogle Scholar
  8. Anand A, Das M, Kundu B, Balla VK, Bodhak S, Gangadharan S (2017) Plasma-sprayed Ti6Al4V alloy composite coatings reinforced with in situ formed TiB–TiN. J Therm Spray Technol 26:2013–2019CrossRefGoogle Scholar
  9. Ataibis V, Taktak S (2015) Characteristics and growth kinetics of plasma paste borided Cp–Ti and Ti6Al4V alloy. Surf Coating Technol 279:65–71CrossRefGoogle Scholar
  10. Avril L, Courant B, Hantzpergue JJ (2006) Tribological performance of α–Fe(Cr)–Fe2B–FeB and –Fe(Cr)–h–BN coatings obtained by laser melting. Wear 260:351–360CrossRefGoogle Scholar
  11. Babul T (1994) Urządzenie do detonacyjnego nakładania powłok ochronnych i regeneracyjnych/Device for detonation spraying protective and regenerative coatings. Patent No. 176390, PolandGoogle Scholar
  12. Babul T (2011) Podstawy procesu natryskiwania detonacyjnego powłok NiCrBSi i WC/Co (Fundamentals of detonation spraying of NiCrBSi and WC/Co coatings). In Polish, Publishing House of Institute of Precision Mechanics, WarsawGoogle Scholar
  13. Ballhause P, Wolf GK (1989) The Influence of temperature on the performance of ion-implanted metal-forming tools. Mater Sci Eng A 115:273–277CrossRefGoogle Scholar
  14. Ballinger J, Catledge SA (2015) Metal-boride interlayers for chemical vapor deposited nanostructured NSD films on 316 and 440C stainless steel. Surf Coat Technol 261:244–252CrossRefGoogle Scholar
  15. Bartkowska A, Pertek A (2014) Laser production of B–Ni complex layers. Surf Coat Technol 248:23–29CrossRefGoogle Scholar
  16. Bartkowska A, Pertek A, Jankowiak M, Jóźwiak K (2012) Laser surface modification of borochromizing C45 steel. Arch Metall Mater 57(1):211–214CrossRefGoogle Scholar
  17. Bartkowska A, Pertek A, Kulka M, Klimek L (2015) Laser surface modification of boronickelized medium carbon steel. Opt Laser Technol 74:145–157CrossRefGoogle Scholar
  18. Bartsch K, Leonhardt A (1999) Formation of iron boride layers on steel by d.c.—plasma boriding and deposition processes. Surf Coat Technol 116–119:386–390CrossRefGoogle Scholar
  19. Basturk S, Senbabaoglu F, Islam C, Erten M, Lazoglu I, Gulmez T (2010) Titanium machining with new plasma boronized cutting tools. CIRP Ann Manuf Technol 59:101–104CrossRefGoogle Scholar
  20. Bataev IA, Bataev AA, Golkovsky MG, Yu Teplykh A, Burov VG, Veselov SV (2012) Non-vacuum electron-beam boriding of low-carbon steel. Surf Coat Technol 207:245–253CrossRefGoogle Scholar
  21. Bataev IA, Bataev AA, Golkovski MG, Krivizhenko DS, Losinskaya AA, Lenivtseva OG (2013) Structure of surface layers produced by non-vacuum electron beam boriding. Appl Surf Sci 284:472–481CrossRefGoogle Scholar
  22. Béjar MA, Henríquez R (2009) Surface hardening of steel by plasma-electrolysis boronizing. Mater Des 30:1726–1728CrossRefGoogle Scholar
  23. Belkin PN, Borisov AM, Kusmanov SA (2016) Plasma electrolytic saturation of titanium and its alloys with light elements. J Surf Invest 10(3):516–535CrossRefGoogle Scholar
  24. Berger JE, Schulz R, Savoie S, Gallego J, Kiminami CS, Bolfarini C, Botta WJ (2017) Wear and corrosion properties of HVOF coatings from superduplex alloy modified with addition of boron. Surf Coat Technol 309:911–919CrossRefGoogle Scholar
  25. Berjeza NA, Velikevitch SP, Mazhukin VI, Smurov I, Flamant G (1995) Influence of temperature gradient to solidification velocity ratio on the structure transformation in pulsed- and CW-laser surface treatment. Appl Surf Sci 86:303–309CrossRefGoogle Scholar
  26. Bojar Z, Senderowski C (2006) Powłoki otrzymywane metodą detonacyjną (Coatings produced by detonation technique). In: Bojar Z, Przetakiewicz W (eds) Materiały metalowe z udziałem faz międzymetalicznych (Metallic materials with participation of intermetallic phases). In Polish, BEL Studio Sp. z o.o., Warsaw, pp 278–303Google Scholar
  27. Booth M, Farrell T, Johnson RH (1983) Theory and practice of plasma carburizing. Heat Treat Met 10(2):45–52Google Scholar
  28. Bourithis L, Papadimitriou GD (2003) Boriding a plain carbon steel with the plasma transferred arc process using boron and chromium diboride powders: microstructure and wear properties. Mater Lett 57:1835–1839CrossRefGoogle Scholar
  29. Bourithis L, Papadimitriou GD (2005) Three body abrasion wear of low carbon steel modified surfaces. Wear 258:1775–1786CrossRefGoogle Scholar
  30. Bourithis L, Papadimitriou GD (2009) The effect of microstructure and wear conditions on the wear resistance of steel metal matrix composites fabricated with PTA alloying technique. Wear 266:1155–1164CrossRefGoogle Scholar
  31. Bourithis L, Papaefthymiou S, Papadimitriou GD (2002) Plasma transferred arc boriding of a low carbon steel: microstructure and wear properties. Appl Surf Sci 200:203–218CrossRefGoogle Scholar
  32. Brahma S, Liu CW, Lo KY (2016) The evolution of structure and defects in the implanted Si surface: inspecting by reflective second harmonic generation. Appl Surf Sci 388:517–523CrossRefGoogle Scholar
  33. Brown SC (1994) Basic data of plasma physics. Woodbury, NY, American Institute of PhysicsGoogle Scholar
  34. Burakowski T (1988) Possibilities of application of ion implantation in metal surface engineering. In Polish, Przegląd Mechaniczny (Mechanical Rev) 16:5–11, 15–32Google Scholar
  35. Burakowski T (1989) Ion implantation and possibilities of its implementation for modification of metal superficial layer properties. In Polish Tribologia 5:4–12Google Scholar
  36. Burakowski T, Wierzchoń T (1998) Surface engineering of metals: principles, equipment, technologies. CRC Press, Washington D.C., Boca Raton, London, New York. ISBN 9780849382253Google Scholar
  37. Burenkov A, Pichler P, Lorenz J, Spiegel Y, Duchaine J, Torregrosa F (2011) Simulation of plasma immersion ion implantation. In: Conference proceedings: international conference on simulation of semiconductor processes and devices, SISPAD2011, Article number 6034962, pp 231–234Google Scholar
  38. Cabeo ER, Laudien G, Biemer S, Rie KT, Hoppe S (1999) Plasma-assisted boriding of industrial components in a pulsed d.c. glow discharge. Surf Coat Technol 116–119:229–233CrossRefGoogle Scholar
  39. Casadesus P, Frantz C, Gantois M (1979) Boriding with a thermally unstable gas (diborane). Metall Trans A 10A:1739–1743CrossRefGoogle Scholar
  40. Chang FM, Wu ZZ, Lin YF, Ch Kao L, Wu CT, JangJian SK, Chen YN, Lo KY (2018) Damage and annealing recovery of boron-implanted ultra-shallow junction: the correlation between beam current and surface configuration. Appl Surf Sci 433:160–165CrossRefGoogle Scholar
  41. Chen H, Xu C, Chen J, Zhao H, Zhang L, Wang Z (2008a) Microstructure and phase transformation of WC/Ni60B laser cladding coatings during dry sliding wear. Wear 264:487–493CrossRefGoogle Scholar
  42. Chen XJ, Yu LG, Khor KA, Sundararajan G (2008b) The effect of boron-pack refreshment on the boriding of mild steel by the spark plasma sintering (SPS) process. Surf Coat Technol 202:2830–2836CrossRefGoogle Scholar
  43. Coig M, Milési F, Lerat J-F, Desrues T, Le Perchec J, Lanterne A, Lachal L, Mazen F (2016) New processes for homojunction silicon solar cells doping: from beam line to plasma immersion ion implantation. In: Conference proceedings: 16th international workshop on junction technology, IWJT 2016, 7 June 2016, Article number 7486671, pp 44–50Google Scholar
  44. Conrad JR (1987) Sheath thickness and potential profiles of ion-matrix sheaths for cylindrical and spherical electrodes. J Appl Phys 62(3):777–779CrossRefGoogle Scholar
  45. Conrad JR, Radtke JL, Dodd RA, Worzala FJ, Tran NC (1987) Plasma source ion-implantation technique for surface modification of materials. J Appl Phys 62(11):4591–4596CrossRefGoogle Scholar
  46. Culha O, Sahin S, Ozdemir I, Toparli M (2014) Heat treatment effects on mechanical properties of atmospheric plasma sprayed FexB coatings on Al substrate. Exp Techniq 38:67–75CrossRefGoogle Scholar
  47. Cunningham FE (1964) The use of lasers for the production of surface alloys. M.S. Thesis, Massachusetts Institute of Technology, Cambridge, MAGoogle Scholar
  48. Da Silva LJ, D’Oliveira ASCM (2016) NiCrSiBC coatings: effect of dilution on microstructure and high temperature tribological behavior. Wear 350–351:130–140CrossRefGoogle Scholar
  49. Da Silva LJ, D’Oliveira ASCM (2017) NiCrSiBC alloy: microstructure and hardness of coatings processed by arc and laser. Weld Int 31(1):1–8CrossRefGoogle Scholar
  50. Dallaire S (1992) Thermal spraying of reactive materials to form wear-resistant composite coatings. J Therm Spray Technol 1(1):41–47CrossRefGoogle Scholar
  51. Dallaire S, Champagne B (1984) Plasma spray synthesis of TiB2–Fe coatings. Thin Solid Films 118(477):483Google Scholar
  52. Dallaire S, Levert H (1992) Synthesis and deposition of TiB2-containing materials by arc spraying. Surf Coat Technol 50:241–248CrossRefGoogle Scholar
  53. Dallaire S, Legoux JG, Levert H (1995) Abrasion wear resistance of arc-sprayed stainless steel and composite stainless steel coatings. J Therm Spray Technol 4(2):163–168CrossRefGoogle Scholar
  54. Darabara M, Papadimitriou GD, Bourithis L (2007) Tribological evaluation of Fe–B–TiB2 metal matrix composites. Surf Coat Technol 202:246–253CrossRefGoogle Scholar
  55. Darabara M, Bourithis L, Diplas S, Papadimitriou GD (2008) A TiB2 metal matrix composite coating enriched with nitrogen: microstructure and wear properties. Appl Surf Sci 254:4144–4149CrossRefGoogle Scholar
  56. Dasheev DE, Smirnyagina NN (2017) Modeling of the electron-beam boriding in the system Fe–B–CO2. IOP Conf Series J Phys Conf Ser 830, Article number 0012070Google Scholar
  57. Dasheev DE, Smirnyagina NN, Khaltanova VM, Semenov AP (2015) Boriding of carbon steels by the electron beam treatment in vacuum. IOP Conf Ser J Phys Conf Ser 652, Article number 012002Google Scholar
  58. Davis JA, Wilbur PJ, Williamson DL, Wei R, Vajo JJ (1998) Ion implantation boriding of iron and AISI M2 steel using a high-current density, low energy, broad-beam ion source. Surf Coat Technol 103–104:52–57CrossRefGoogle Scholar
  59. Dearnaley G (1982) Practical applications of ion implantation. J Metals 34(9):18–28Google Scholar
  60. Dearnaley G (1990) Ion beam modification of metals. Nucl Instrum Methods Phys Res B 50:358–367CrossRefGoogle Scholar
  61. Dearnley PA, Farrell T, Bell T (1986) Developments in plasma boronizing. J Mater Energy Syst 8(2):128–131CrossRefGoogle Scholar
  62. Deschuyteneer D, Petit F, Gonon M, Cambier F (2015) Processing and characterization of laser clad NiCrBSi/WC composite coatings—influence of microstructure on hardness and wear. Surf Coat Technol 283:162–171CrossRefGoogle Scholar
  63. Dikici B, Ozdemir I (2012) FeB and FeB/h–BN based anti-corrosive composite coatings for aluminium alloys. Anti-Corros Methods Mater 59(5):246–254CrossRefGoogle Scholar
  64. Dimitrova VI (1995) Surface modification in nitrogen and boron-ion implanted P18 high-speed steel with TIN coating. Thin Solid Films 261:209–218CrossRefGoogle Scholar
  65. Dobrzański LA, Dobrzańska-Danikiewicz AD (2011) Obróbka powierzchni materiałów inżynierskich (Engineering materials surface treatment). In Polish, Sci Int J World Acad Mater Manuf Eng 5. ISBN 83-89728-93-1Google Scholar
  66. Engel A (1965) Ionized Gases. Woodbury, NY, American Institute of Physics. Reprinted by arrangement with Oxford University Press (1994)Google Scholar
  67. Ensinger W (1996) Plasma immersion ion implantation for metallurgical and semiconductor research and development. Nucl Instrum Methods Phys Res B 120:270–281CrossRefGoogle Scholar
  68. Ensinger W, Volz K, Enders B (1999) An apparatus for in-situ or sequential plasma immersion ion beam treatment in combination with r.f. sputter deposition or triode d.c. sputter deposition. Surf Coat Technol 120–121:343–346CrossRefGoogle Scholar
  69. Ensinger W, Kraft G, Sittner F, Volz K, Baba K, Hatada R (2007) Silicon carbide and boron carbide thin films formed by plasma immersion ion implantation of hydrocarbon gases. Surf Coat Technol 201:8366–8369CrossRefGoogle Scholar
  70. Essa Z, Cristiano F, Spiegel Y, Qiu Y, Boulenc P, Quillec M, Taleb N, Zographos N, Bedel-Pereira E, Mortet V, Burenkov A, Hackenberg M, Torregrosa F, Tavernier C (2014) Large boron-interstitial cluster modelling in BF3 plasma implanted silicon. Physica Status Solidi (C) 11(1):117–120CrossRefGoogle Scholar
  71. Euh K, Lee J, Lee S, Koo Y, Kim NJ (2001) Microstructural modification and hardness improvement in boride/Ti–6Al–4V surface-alloyed materials fabricated by high-energy electron beam irradiation. Scripta Mater 45:1–6CrossRefGoogle Scholar
  72. Fauchais PL, Heberlein JVR, Boulos M (2014) Thermal spray fundamentals: from powder to part. Springer, New York, Heidelberg, Dordrecht, London. ISBN 978-0-387-28319-7CrossRefGoogle Scholar
  73. Fedorishcheva MV, Sergeev VP, Voronov AV, Sergeev OV, Popova NA, Kozlov EV (2007) Structure and phase composition of grade 38KhN3MFA steel implanted with Cr and B ions. Bull Russian Acad Sci Phys 71(2):221–223CrossRefGoogle Scholar
  74. Filep E, Farkas S (2005) Kinetics of plasma-assisted boriding. Surf Coat Technol 199:1–6CrossRefGoogle Scholar
  75. Filip R (2008) Kształtowanie mikrostruktury i właściwości warstwy wierzchniej stopów tytanu w procesie przetapiania laserowego (The structure formation and the properties of surface layer of titanium alloys in laser remelting process). In Polish, Publishing House of Rzeszow University of Technology, Rzeszów. ISBN 978-83-7199-491-3Google Scholar
  76. Filip R, Sieniawski J, Pleszakov E (2006) Formation of surface layers on Ti–6Al–4V titanium alloy by laser alloying. Surf Eng 22(1):53–57CrossRefGoogle Scholar
  77. Fillit R, Mizera J, Bieliński P, Wierzchoń T (1995) Determining the stress state in iron and iron-nickel boride layers produced under glow discharge conditions. J Mater Sci Letters 14:1633–1634CrossRefGoogle Scholar
  78. Frey H, Kienel G (1987) Dünschicht Technologie. VDI Verlag, DüsseldorfGoogle Scholar
  79. Galvanetto E, Borgioli F, Bacci T, Pradelli G (2006) Wear behaviour of iron boride coatings produced by VPS technique on carbon steels. Wear 260:825–831CrossRefGoogle Scholar
  80. Gan JA, Berndt CC (2011) Design and manufacture of Nd–Fe–B thick coatings by the thermal spray process. Surf Coat Technol 205:4697–4704CrossRefGoogle Scholar
  81. Gan JA, Berndt CC, Wong YC, Wang J (2013) Void formation and spatial distribution in plasma sprayed Nd–Fe–B coatings. J Therm Spray Technol 22(2–3):337–344CrossRefGoogle Scholar
  82. Gao L, Wang HZ, Hong JS, Miyamoto H, Miyamoto K, Nishikawa Y, Torre SDDL (1999) Mechanical properties and microstructure of nano-SiC–Al2O3 composites densified by spark plasma sintering. J Eur Ceram Soc 19:609–613CrossRefGoogle Scholar
  83. Gladush GG, Smurov I (2011) Physics of laser materials processing. Springer Ser Mater Sci 146(1). ISBN: 978-364219242-5Google Scholar
  84. Gopalakrishnan P, Shankar P, Subba Rao RV, Sundar M, Ramakrishnan SS (2001) Laser surface modification of low carbon borided steels. Scripta Mater 44:707–712CrossRefGoogle Scholar
  85. Gromov VE, Ivanov YuF, Glezer AM, Kormyshev VE, Konovalov SV (2017) Electron-beam modification of a surface layer deposited on low-carbon steel by means of arc spraying. Bull Russian Acad Sci Phys 81(11):1353–1359CrossRefGoogle Scholar
  86. Gunes I (2014) Tribological properties and characterization of plasma paste borided 5120 steel. J Balkan Tribol Assoc 20(3):351–361Google Scholar
  87. Gunes I, Ulker S, Taktak S (2011) Plasma paste boronizing of AISI 8620, 52100 and 440C steels. Mater Des 32:2380–2386CrossRefGoogle Scholar
  88. Gunes I, Taktak S, Bindal C, Yalcin Y, Ulker S, Kayali Y (2013a) Investigation of diffusion kinetics of plasma paste borided AISI 8620 steel using a mixture of B2O3 paste and B4C/SiC. Sadhana-Acad Proc Eng Sci 38(3):513–526Google Scholar
  89. Gunes I, Ulker S, Taktak S (2013b) Kinetics of plasma paste boronized AISI 8620 steel in borax paste mixtures. Protect Metals Phys Chem Surf 49(5):567–573CrossRefGoogle Scholar
  90. Guo C, Zhou J, Zhao J, Guo B, Yu Y, Zhou H, Chen J (2011) Microstructure and friction and wear behavior of laser boronizing composite coatings on titanium substrate. Appl Surf Sci 257:4398–4405CrossRefGoogle Scholar
  91. Guo Y, Koga GY, Moreira Jorge A Jr, Savoie S, Schulz R, Kiminami CS, Bolfarini C, Botta WJ (2016) Microstructural investigation of Fe–Cr–Nb–B amorphous/nanocrystalline coating produced by HVOF. Mater Des 111:608–615CrossRefGoogle Scholar
  92. Gurumoorthy K, Kamaraj M, Prasad Rao K, Sambasiva Rao A, Venugopal S (2007) Microstructural aspects of plasma transferred arc surfaced Ni-based hardfacing alloy. Mater Sci Eng A 456:11–19CrossRefGoogle Scholar
  93. Hebda M (2012) Spark plasma sintering—a new technology of consolidation of powder materials. Mechanics (Mechanika) 11(11):47–55Google Scholar
  94. Hemmati I, Ocelík V, De Hosson JThM (2013) Toughening mechanism for Ni–Cr–B–Si–C laser deposited coatings. Mater Sci Eng A 582:305–315CrossRefGoogle Scholar
  95. Hermanek FJ (2001) Thermal spray terminology and company origins. ASM International, Materials Park, OHGoogle Scholar
  96. Horlock AJ, McCartney DG, Shipway PH, Wood JV (2002) Thermally sprayed Ni(Cr)–TiB2 coatings using powder produced by self-propagating high temperature synthesis: microstructure and abrasive wear behaviour. Mater Sci Eng A 336:88–98CrossRefGoogle Scholar
  97. Huang C, Zhang B, Lan H, Du L, Zhang W (2014) Friction properties of high temperature boride coating under dry air and water vapor ambiences. Ceram Int 40:12403–12411CrossRefGoogle Scholar
  98. Hunger HJ, Löbig G (1997) Generation of boride layers on steel and nickel alloys by plasma activation of boron trifluoride. Thin Solid Films 310:244–250CrossRefGoogle Scholar
  99. Iakovou R, Bourithis L, Papadimitriou G (2002) Synthesis of boride coatings on steel using plasma transferred arc (PTA) process and its wear performance. Wear 252:1007–1015CrossRefGoogle Scholar
  100. Iwaki M (1987) Tribological properties of ion-implanted steels. Mater Sci Eng 90:263–271CrossRefGoogle Scholar
  101. Jain A, Shrivastava S (1995) Effect of martensite content on the sliding behavior of boron-ion-implanted 304 stainless steel. Thin Solid Films 259:167–173CrossRefGoogle Scholar
  102. Jang CW, Kim JH, Lee DH, Shin DH, Kim S, Choi S-H, Hwang E, Elliman RG (2017) Effect of stopping-layer-assisted boron-ion implantation on the electrical properties of graphene: interplay between strain and charge doping. Carbon 118:343–347CrossRefGoogle Scholar
  103. Jin HW, Park CG, Kim MC (1999) Microstructure and amorphization induced by frictional work in Fe–Cr–B alloy thermal spray coatings. Surf Coat Technol 113:103–112CrossRefGoogle Scholar
  104. Johnson DL (1991) Microwave and plasma sintering of ceramics. Ceram Int 17(5):295–300CrossRefGoogle Scholar
  105. Johnston JM, Catledge SA (2016) Metal-boride phase formation on tungsten carbide (WC–Co) during microwave plasma chemical vapor deposition. Appl Surf Sci 364:315–321CrossRefGoogle Scholar
  106. Johnston JM, Jubinsky M, Catledge SA (2015) Plasma boriding of a cobalt–chromium alloy as an interlayer for nanostructured diamond growth. Appl Surf Sci 328:133–139CrossRefGoogle Scholar
  107. Johnston JM, Baker P, Catledge SA (2016) Improved nanostructured diamond adhesion on cemented tungsten carbide with boride interlayers. Diam Relat Mater 69:114–120CrossRefGoogle Scholar
  108. Jones M, Horlock AJ, Shipway PH, McCartney DG, Wood JV (2001) A comparison of the abrasive wear behaviour of HVOF sprayed titanium carbide- and titanium boride-based cermet coatings. Wear 251:1009–1016CrossRefGoogle Scholar
  109. Kaczmarek M, Jurczyk MU, Miklaszewski A, Paszel-Jaworska A, Romaniuk A, Lipińska N, Żurawski J, Urbaniak P, Jurczyk K (2016) In vitro biocompatibility of titanium after plasma surface alloying with boron. Mater Sci Eng C 69:1240–1247CrossRefGoogle Scholar
  110. Kadyrov E, Kadyrov V (1995) Gas dynamical parameters of detonation powder spraying. J Therm Spray Technol 4(3):280–286CrossRefGoogle Scholar
  111. Kadyrov KV, Polishchuk IE, Khairutdinov AM (1985) Protective properties of detonation-deposited coatings from powders alloyed with aluminum and boron. Powder Metall Metal Ceram (Poroshkovaya Metallurgiya) 24(8):628–631CrossRefGoogle Scholar
  112. Kaeppelin V, Carrère M, Torregrosa F, Mathieu G (2002) Characterisation of an industrial plasma immersion ion implantation reactor with a Langmuir probe and an energy-selective mass spectrometer. Surf Coat Technol 156:119–124CrossRefGoogle Scholar
  113. Kaestner P, Olfe J, Rie KT (2001) Plasma-assisted boriding of pure titanium and TiAl6V4. Surface Coating Technol 142–144:248–252CrossRefGoogle Scholar
  114. Kawasumi H (1981) Metal surface hardening CO2 laser. In: Metzbower EA (ed) Source book on applications of the laser in metalworking. ASM, Metals Park, Ohio, pp 185–195Google Scholar
  115. Keddam M, Taktak S (2017) Characterization and diffusion model for the titanium boride layers formed on the Ti6Al4V alloy by plasma paste boriding. Appl Surf Sci 399:229–236CrossRefGoogle Scholar
  116. Keddam M, Taktak S, Tasgeriten S (2016) A diffusion model for the titanium borides on pure titanium. Surf Eng 32(11):802–808CrossRefGoogle Scholar
  117. Keddam M, Kulka M, Makuch N, Pertek A, Małdziński L (2014) A kinetic model for estimating the boron activation energies in the FeB and Fe2B layers during the gas-boriding of Armco iron: Effect of boride incubation times. Appl Surf Sci 298:155–163CrossRefGoogle Scholar
  118. Keddam M, Chegroune R, Kulka M, Panfil D, Ulker S, Taktak S (2017) Characterization and diffusion kinetics of the plasma paste borided AISI 440C steel. Trans Indian Inst Met 70(5):1377–1385CrossRefGoogle Scholar
  119. Keddam M, Chegroune R, Kulka M, Makuch N, Panfil D, Siwak P, Taktak S (2018) Characterization, tribological and mechanical properties of plasma paste borided AISI 316 steel. Trans Indian Inst Met 71(1):79–90CrossRefGoogle Scholar
  120. Kern KT, Walter KC, Griffin AJ Jr, Lu Y, Nastasi M, Scarborough WK, Tesmer JR, Fayeulle S (1997) Boron and nitrogen implantation of steels. Nucl Instrum Methods Phys Res B 127(128):972–976CrossRefGoogle Scholar
  121. Khan FF, Bae G, Kang K, Na H, Kim J, Jeong T, Lee C (2011) Evaluation of die-soldering and erosion resistance of high velocity oxy-fuel sprayed MoB-based cermet coatings. J Therm Spray Technol 20:1022–1034CrossRefGoogle Scholar
  122. Kharlamov Y, Kharlamov M (2013) Design concepts of gaseous detonation guns for thermal spraying. Archiv Comm Motorization Power Ind Agric 13(4):82–91Google Scholar
  123. Kholmetskii AL, Anischik VM, Uglov VV, Rusalsky DP, Kuleshov AK, Fedotova JA (2003) CEMS investigations of AISI M2 steel after ion implantation by nitrogen, boron and carbon. Vacuum 69:521–527CrossRefGoogle Scholar
  124. Khor KA, Yu LG, Sundararajan G (2005) Formation of hard tungsten boride layer by spark plasma sintering boriding. Thin Solid Films 478:232–237CrossRefGoogle Scholar
  125. Kim H-J, Grossi S, Kweon Y-G (1999a) Characterization of Fe–Cr–B based coatings produced by HVOF and PTA processes. Met Mater 5(1):63–72CrossRefGoogle Scholar
  126. Kim H-J, Grossi S, Kweon Y-G (1999b) Wear performance of metamorphic alloy coatings. Wear 232:51–60CrossRefGoogle Scholar
  127. Kim H-J, Yoon B-H, Lee C-H (2001) Wear performance of the Fe-based alloy coatings produced by plasma transferred arc weld-surfacing process. Wear 249:846–852CrossRefGoogle Scholar
  128. Kluge A, Langguth K, Ochsner R, Kobs K, Ryssel H (1989) Examination of wear, hardness and friction of nitrogen-, boron-, carbon-, silver-, lead- and tin-implanted steels with different chromium contents. Mater Sci Eng A 115:261–265CrossRefGoogle Scholar
  129. Koga GY, Schulz R, Savoie S, Nascimento ARC, Drolet Y, Bolfarini C, Kiminami CS, Botta WJ (2017) Microstructure and wear behavior of Fe-based amorphous HVOF coatings produced from commercial precursors. Surf Coatings Technol 309:938–944CrossRefGoogle Scholar
  130. Kulka M, Pertek A (2003) Microstructure and properties of borided 41Cr4 steel after laser surface modification with re-melting. Appl Surf Sci 214:278–288CrossRefGoogle Scholar
  131. Kulka M, Pertek A (2004) Microstructure and properties of borocarburized 15CrNi6 steel after laser surface modification. Appl Surf Sci 236:98–105CrossRefGoogle Scholar
  132. Kulka M, Pertek A (2007) Laser surface modification of carburized and borocarburized 15CrNi6 steel. Mater Charact 58(5):461–470CrossRefGoogle Scholar
  133. Kulka M, Makuch N, Pertek A, Piasecki A (2012) Microstructure and properties of borocarburized and laser-modified 17CrNi6-6 steel. Opt Laser Technol 44:872–881CrossRefGoogle Scholar
  134. Kulka M, Makuch N, Pertek A, Małdziński L (2013a) Simulation of the growth kinetics of boride layers formed on Fe during gas boriding in H2–BCl3 atmosphere. J Solid State Chem 199:196–203CrossRefGoogle Scholar
  135. Kulka M, Dziarski P, Makuch N, Piasecki A, Miklaszewski A (2013b) Microstructure and properties of laser-borided Inconel 600-alloy. Appl Surf Sci 284:757–771CrossRefGoogle Scholar
  136. Kulka M, Makuch N, Pertek A (2013c) Microstructure and properties of laser-borided 41Cr4 steel. Opt Laser Technol 45:308–318CrossRefGoogle Scholar
  137. Kulka M, Makuch N, Dziarski P, Piasecki A, Miklaszewski A (2014a) Microstructure and properties of laser-borided composite layers formed on commercially pure titanium. Opt Laser Technol 56:409–424CrossRefGoogle Scholar
  138. Kulka M, Makuch N, Dziarski P, Piasecki A (2014b) A study of nanoindentation for mechanical characterization of chromium and nickel borides’ mixtures formed by laser boriding. Ceram Int 40:6083–6094CrossRefGoogle Scholar
  139. Kulka M, Makuch N, Dziarski P, Mikołajczak D, Przestacki D (2015) Gradient boride layers formed by diffusion carburizing and laser boriding. Opt Lasers Eng 67:163–175CrossRefGoogle Scholar
  140. Kulka M, Mikolajczak D, Makuch N, Dziarski P, Miklaszewski A (2016) Wear resistance improvement of austenitic 316L steel by laser alloying with boron. Surf Coat Technol 291:292–313CrossRefGoogle Scholar
  141. Küper A, Qiao X, Stock HR, Mayr P (2000) A novel approach to gas boronizing. Surf Coat Technol 130:87–94CrossRefGoogle Scholar
  142. Kusiński J (2000) Lasery i ich zastosowanie w inżynierii materiałowej (Lasers and their application in materials science and engineering). In Polish, Scientific Publishing House Akapit, Krakow. ISBN 83-7108-071-9Google Scholar
  143. Kusmanov SA, Shadrin YS, Belkin PN (2014) Carbon transfer from aqueous electrolytes to steel by anode plasma electrolytic carburising. Surf Coat Technol 258:727–733CrossRefGoogle Scholar
  144. Kusmanov SA, Naumov AR, Tambovskiy IV, Belkin PN (2015a) Anode plasma electrolytic saturation of low-carbon steel with carbon, nitrogen, boron, and sulfur. Lett Mater 5(1):35–38CrossRefGoogle Scholar
  145. Kusmanov SA, Kusmanova YuV, Naumov AR, Belkin PN (2015b) Features of anode plasma electrolytic nitrocarburising of low carbon steel. Surf Coat Technol 272:149–157CrossRefGoogle Scholar
  146. Kusmanov SA, Tambovskiy IV, Sevostyanova VS, Savushkina SV, Belkin PN (2016) Anode plasma electrolytic boriding of medium carbon steel. Surf Coat Technol 291:334–341CrossRefGoogle Scholar
  147. Kusmanov SA, Tambovskiy IV, Naumov AR, D’yakov IG, Kusmanova IA, Belkin PN (2017a) Anodic electrolytic-plasma borocarburizing of low-carbon steel. Protect Metals Phys Chem Surf 53(3):488–494CrossRefGoogle Scholar
  148. Kusmanov SA, Silkin SA, Smirnov AA, Belkin PN (2017b) Possibilities of increasing wear resistance of steel surface by plasma electrolytic treatment. Wear 386–387:239–246CrossRefGoogle Scholar
  149. Lakhtin YM, Kogan YD, Buryakin AV (1985) Surface saturation of steel with boron by laser radiation. Metal Sci Heat Treat (Metallovedenie i Termicheskaya Obrabotka Metallov) 11:9–11Google Scholar
  150. Lanterne A, Le Perchec J, Coig M, Milési F, Boucher J, Veschetti Y (2016) Solar-grade boron emitters by BF3 plasma doping and role of the co-implanted fluorine. Prog Photovoltaics Res Appl 24:348–356CrossRefGoogle Scholar
  151. Lebrun JP (2014) Plasma-assisted processes for surface hadening of stainless steel. In: Mittemeijer EJ, Sommers MAJ (eds) Thermochemical surface engineering of steels: improving materials performance. Woodhead Publishing Series in Metals and Surface Engineering: Number 62, pp 615–632Google Scholar
  152. Lee Y, Lee EH, Mansur LK (1992) Hardness and wear properties of boron-implanted poly(ether-ether-ketone) and poly-ether-imide. Surf Coat Technol 51:267–272CrossRefGoogle Scholar
  153. Lerat J-F, Desrues T, Le Perchec J, Coig M, Milési F, Mazen F, Michel T, Roux L, Veschetti Y, Dubois S (2016) Boron emitter formation by plasma immersion ion implantation in n-type PERT silicon solar cells. Energy Procedia 92:697–701CrossRefGoogle Scholar
  154. Li M, Christofides PD (2004) Feedback control of HVOF thermal spray process accounting for powder size distribution. J Therm Spray Technol 13(1):108–120CrossRefGoogle Scholar
  155. Li XM, Han Y (2006) Porous nanocrystalline Ti (CxN1−x) thick films by plasma electrolytic carbonitriding. Electrochem Commun 8:267–272CrossRefGoogle Scholar
  156. Li M, Shi D, Christofides PD (2005) Modeling and control of HVOF thermal spray processing of WC–Co coatings. Powder Technol 156:177–194CrossRefGoogle Scholar
  157. Lin C-M (2012) Parameter optimisation of a vacuum plasma spraying process using boron carbide. J Therm Spray Technol 21(5):873–881CrossRefGoogle Scholar
  158. Lin J, Wang Z, Lin P, Cheng J, Zhang X, Hong S (2014a) Microstructure and cavitation erosion behavior of FeNiCrBSiNbWcoating prepared by twin wires arc spraying process. Surf Coat Technol 240:432–436CrossRefGoogle Scholar
  159. Lin J, Wang Z, Lin P, Cheng J, Zhang X, Hong S (2014b) Effect of crystallisation on electrochemical properties of arc sprayed FeNiCrBSiNbW coatings. Surf Eng 30(9):683–687CrossRefGoogle Scholar
  160. Lin J, Wang Z, Lin P, Cheng J, Zhang X, Hong S (2015) Effects of post annealing on the microstructure, mechanical properties and cavitation erosion behavior of arc-sprayed FeNiCrBSiNbW coatings. Mater Des 65:1035–1040CrossRefGoogle Scholar
  161. Lin C-M, Kai W-Y, Su C-Y, Tsai C-N, Chen Y-C (2017) Microstructure and mechanical properties of Ti–6Al–4V alloy diffused with molybdenum and nickel by double glow plasma surface alloying technique. J Alloy Compd 717:197–204CrossRefGoogle Scholar
  162. Liu J (1990) The solidification characteristic and the nucleation mechanism of the laser dynamic solidification structure. Trans Metal Heat Treat (Jinshu Rechuli Xuebao) 3:13–23Google Scholar
  163. Liu R, Wang B, Wu J, Xue W, Jin X, Du J, Hua M (2014) Spectroscopic investigation of plasma electrolytic borocarburizing on q235 low-carbon steel. Appl Surf Sci 321:348–352CrossRefGoogle Scholar
  164. Liyanage T, Fisher G, Gerlich AP (2010) Influence of alloy chemistry on microstructure and properties in NiCrBSi overlay coatings deposited by plasma transferred arc welding (PTAW). Surf Coat Technol 205:759–765CrossRefGoogle Scholar
  165. Lotfi B, Shipway PH, McCartney DG, Edris H (2003) Abrasive wear behaviour of Ni(Cr)–TiB2 coatings deposited by HVOF spraying of SHS-derived cermet powders. Wear 254:340–349CrossRefGoogle Scholar
  166. Lu W, Wu Y, Zhang J, Hong S, Zhang J, Li G (2011) Microstructure and corrosion resistance of plasma sprayed Fe-based alloy coating as an alternative to hard chromium. J Therm Spray Technol 20(5):1063–1070CrossRefGoogle Scholar
  167. Lu X, Li K, Xie Y, Huang L, Zheng X (2016) Chemical stability and osteogenic activity of plasma-sprayed boron-modified calcium silicate-based coatings. J Mater Sci Mater Med 27:166CrossRefGoogle Scholar
  168. Lü W-Q, Cao Y-Z, Wang L-P, Wang X-F, Gu Z-W, Yan Y-D, Yu F-L (2017) Effect of cathode composition on microstructure and tribological properties of TiBN nanocomposite multilayer coating synthesized by plasma immersion ion implantation and deposition. J Central South Univ 24(10):2238–2244CrossRefGoogle Scholar
  169. Lv H, Nie P, Yan Y, Wang J, Sun B (2010) Characterization and adhesion strength study of detonation-sprayed MoB–CoCr alloy coatings on 2Cr13 stainless steel substrate. J Coat Technol Res 7(6):801–807CrossRefGoogle Scholar
  170. Lyakhovich LS, Isakov SA, Kartoshkin VM, Pakhadnya VP (1985) Determination of the conditions of boronizing steel with heating by laser radiation. Metal Sci Heat Treat (Metallovedenie i Termicheskaya Obrabotka Metallov) 11:12–14Google Scholar
  171. Lyakhovich LS, Isakov SA, Kartoshkin VM, Pakhadnya VP (1987) Laser alloying. (Metal Sci Heat Treat Metallovedenie i Termicheskaya Obrabotka Metallov) 3:14–19Google Scholar
  172. Lysenko AB, Kozina NN, Gulyaeva TV, Shibaev VV, Glushkov AG (1991) Structure and properties of steels after boronizing with the use of laser heating. Metal Sci Heat Treat (Metallovedenie i Termicheskaya Obrabotka Metallov) 3:2–4Google Scholar
  173. Lysenko AB, Kozina NN, Miroshnichenko IS, Borisova GV (1995) Special features of structure formation in steels subjected to surface alloying. Metal Sci Heat Treat (Metallovedenie i Termicheskaya Obrabotka Metallov) 12:10–12Google Scholar
  174. Ma Z, Wang W, Zou J, Dong S, Zhang L, Li Z (2011) Preparation and properties of flame-sprayed Mo–FeB–Fe cermet coatings. Trans Nonferrous Metals Soc Chin 21:1314–1321CrossRefGoogle Scholar
  175. Madakson PB (1985) Friction, wear and the hardness of boron-implanted 18W–4Cr–IV steel. Mater Sci Eng 69:167–172CrossRefGoogle Scholar
  176. Major B (1996) Laserowa modyfikacja stali poprzez wprowadzanie węglików i borków (Laser modification of steel by introducing carbides and borides). In Polish, Conference proceedings: III Nationwide conference „Surface treatment” Częstochowa-Kule, pp 263–268Google Scholar
  177. Majumdar JD, Li L (2010) Development of titanium boride (TiB) dispersed titanium (Ti) matrix composite by direct laser cladding. Mater Lett 64:1010–1012CrossRefGoogle Scholar
  178. Makarov AV, Soboleva NN, Yu Malygina I (2017) Role of the strengthening phases in abrasive wear resistance of laser-clad NiCrBSi coatings. J Frict Wear (Trenie i Iznos) 38(4):272–278CrossRefGoogle Scholar
  179. Makuch N, Kulka M, Dziarski P, Przestacki D (2014) Laser surface alloying of commercially pure titanium with boron and carbon. Opt Lasers Eng 57:64–81CrossRefGoogle Scholar
  180. Makuch N, Piasecki A, Dziarski P, Kulka M (2015) Influence of laser alloying with boron and niobium on microstructure and properties of Nimonic 80A-alloy. Opt Laser Technol 75:229–239CrossRefGoogle Scholar
  181. Makuch N, Kulka M, Keddam M, Taktak S, Ataibis V, Dziarski P (2017) Growth kinetics and some mechanical properties of two-phase boride layers produced on commercially pure titanium during plasma paste boriding. Thin Solid Films 626:25–37CrossRefGoogle Scholar
  182. Mann BS, Arya V, Pant BK (2011) Enhanced erosion protection of TWAS coated Ti6Al4V alloy using boride bond coat and subsequent laser treatment. J Mater Eng Perform 20(6):932–940CrossRefGoogle Scholar
  183. Marest G (1998) Surface treatment by ion implantation. Hyperfine Interact 111:121–127CrossRefGoogle Scholar
  184. Masanta M, Ganesh P, Kaul R, Natha AK, Roy Choudhury A (2009) Development of a hard nano-structured multi-component ceramic coating by laser cladding. Mater Sci Eng A 508:134–140CrossRefGoogle Scholar
  185. Miklaszewski A, Jurczyk M (2011) Wear improvement of pure titanium surface by TiB precipitation after plasma alloying process. Mater Sci Forum 674:147–152CrossRefGoogle Scholar
  186. Miklaszewski A, Jurczyk MU, Jurczyk K, Jurczyk M (2011) Plasma surface modification of titanium by TiB precipitation for biomedical applications. Surf Coat Technol 206:330–337CrossRefGoogle Scholar
  187. Miklaszewski A, Jurczyk MU, Jurczyk M (2012) Surface modification of pure titanium by TiB precipitation. Solid State Phenom 183:131–136CrossRefGoogle Scholar
  188. Miklaszewski A, Jurczyk MU, Jurczyk M (2013) Microstructural development of Ti–B alloyed layer for hard tissue applications. J Mater Sci Technol 29(6):565–572CrossRefGoogle Scholar
  189. Milési F, Coig M, Lerat JF, Desrues T, Le Perchec J, Lanterne A, Lachal L, Mazen F (2017) Homojunction silicon solar cells doping by ion implantation. Nucl Instrum Methods Phys Res B 409:53–59CrossRefGoogle Scholar
  190. Milonov AS, Danzheev BA, Smirnyagina NN, Dasheev DE, Kim TB, Semenov AP (2015) Synthesis of transition metal borides layers under pulsed electron-beams treatment in a vacuum for surface hardening of instrumental steels. IOP Conf Ser J Phys Conf Ser 652, Article number 012010Google Scholar
  191. Miyashita F, Yokota K (1996) Plasma-assisted low temperature boridation of pure iron and steels. Surf Coat Technol 84:334–337CrossRefGoogle Scholar
  192. Mizuno H, Kitamura J (2007) MoB/CoCr cermet coatings by HVOF spraying against erosion by molten Al–Zn alloy. J Therm Spray Technol 16(3):404–413CrossRefGoogle Scholar
  193. Mizuno B, Nakayama I, Aoi N, Kubota M, Komeda T (1988) New doping method for subhalf micron trench sidewalls by using an electron cyclotron resonance plasma. Appl Phys Lett 53(21):2059–2061CrossRefGoogle Scholar
  194. Molian PA, Rajasekhara HS (1986) Laser glazing of boronized iron and tool steels. Surf Eng 2(4):269–274CrossRefGoogle Scholar
  195. Morimoto J, Ozaki T, Kubohori T, Morimoto S, Abe N, Tsukamoto M (2009) Some properties of boronized layers on steels with direct diode laser. Vacuum 83:185–189CrossRefGoogle Scholar
  196. Mukherjee S, Ranjan M, Rane R, Vaghela N, Phukan A, Suraj KS (2007) Pulsed plasma production for applications in plasma immersion ion implantation and its implications. Surf Coat Technol 201:6502–6507CrossRefGoogle Scholar
  197. Nam KS, Lee KH, Lee SR, Kwon SC (1998) A study on plasma-assisted boriding of steels. Surf Coatings Technol 98:886–890Google Scholar
  198. Nastasi M, He X-M, Walter KC, Hakovirta M, Trkula M (2001) The use of plasma immersion ion processing in the synthesis of protective coatings for Al die casting. Surf Coat Technol 136:162–167CrossRefGoogle Scholar
  199. Nie X, Tsotsos C, Wilson A, Yerokhin AL, Leyland A, Matthews A (2001) Characteristics of a plasma electrolytic nitrocarburising treatment for stainless steels. Surf Coat Technol 139:135–142CrossRefGoogle Scholar
  200. Niziev VG, Nesterov AV (1999) Influence of beam polarization on laser cutting efficiency. J Phys D Appl Phys 32:1455–1461CrossRefGoogle Scholar
  201. Novakova AA, Sizov IG, Golubok DS, Yu Kiseleva T, Revokatov PO (2004) Electron-beam boriding of low-carbon steel. J Alloy Compd 383:108–112CrossRefGoogle Scholar
  202. Oczoś K (1988) Kształtowanie materiałów skoncentrowanymi strumieniami energii (The shaping of materials by concentrated fluxes of energy). In Polish, Publishing House of Rzeszow University of Technology, RzeszówGoogle Scholar
  203. Ohtani S, Mizutani Y, Takagi T (1993) Characteristics of tool steel implanted with multi-energy B+ and single-energy N2+ ions. Nucl Instrum Methods Phys Res B 80(81):336–339CrossRefGoogle Scholar
  204. Oliker VE, Sirovatka VL, Ya Gridasova T, Timofeeva II, Grechishkin EF, Yakovleva MS, Eliseeva EN (2009) Effect of gas media on the structure evolution and phase composition of detonation coatings sprayed from mechanically alloyed Ti–Al–B powders. Powder Metall Metal Ceram (Poroshkovaya Metallurgiya) 48(11–12):620–626CrossRefGoogle Scholar
  205. Ozdemir I, Ogawa K, Sato K (2014) Iron boron based powders sprayed by high velocity spray processes. Surf Coat Technol 240:373–379CrossRefGoogle Scholar
  206. Paczkowska M, Ratuszek W, Waligóra W (2010) Microstructure of laser boronized nodular iron. Surf Coat Technol 205:2542–2545CrossRefGoogle Scholar
  207. Pertek A (1994) Gas boriding condition for the iron borides layers formation. Mater Sci Forum 163–165:323–328CrossRefGoogle Scholar
  208. Pertek A, Kulka M (2003) Characterization of single tracks after laser surface modification of borided 41Cr4 steel. Appl Surf Sci 205:137–142CrossRefGoogle Scholar
  209. Piasecki A, Kulka M, Kotkowiak M (2016) Wear resistance improvement of 100CrMnSi6-4 bearing steel by laser boriding using CaF2 self-lubricating addition. Tribol Int 97:73–191CrossRefGoogle Scholar
  210. Piasecki A, Kotkowiak M, Kulka M (2017) Self-lubricating surface layers produced using laser alloying of bearing steel. Wear 376–377:993–1008CrossRefGoogle Scholar
  211. Piñero JC, Villar MP, Araujo D, Montserrat J, Antúnez B, Godignon P (2017) Impact of thermal treatments in crystalline reconstruction and electrical properties of diamond Ohmic contacts created by boron ion implantation. Physica Status Solidi A 214, Article number 1700230CrossRefGoogle Scholar
  212. Podchernyaeva IA (1997) Formation and properties of a surface layer during comprehensive laser boriding of carbon steels. Powder Metall Metal Ceram (Poroshkovaya Metallurgiya) 1–2:74–78Google Scholar
  213. Podchernyaeva IA, Astakhov EA, Umanskii AP, Panasyuk AD, Konoval VP, Panashenko VM (2010) Structure and phase composition of composite detonation coatings based on TiCrB2 and ZrB2. Powder Metall Metal Ceram (Poroshkovaya Metallurgiya) 49(5–6):295–303CrossRefGoogle Scholar
  214. Postnikov VS, Tagirov MN (1994) Laser boriding of titanium alloys. Metal Sci Heat Treat (Metallovedenie i Termicheskaya Obrabotka Metallov) 1:14–15Google Scholar
  215. Pougoum F, Martinu L, Klemberg-Sapieha JE, Savoie S, Schulz R (2016a) Wear properties of Fe3Al-based HVOF coatings strengthened with in-situ precipitated nitride and boride particles. Surf Coat Technol 307:109–117CrossRefGoogle Scholar
  216. Pougoum F, Martinu L, Desjardins P, Klemberg-Sapieha JE, Gaudet S, Savoie S, Schulz R (2016b) Effect of high-energy ball-milling on the characteristics of Fe3Al-based HVOF coatings containing boride and nitride phases. Wear 358–359:97–108CrossRefGoogle Scholar
  217. Przybyłowicz K (2000) Teoria i praktyka borowania stali (Theory and practice of steel boronizing). In Polish, Publishing House of Kielce University of Technology, Kielce PL ISSN 0239-4979Google Scholar
  218. Qiao X, Stock HR, Küper A, Jarms C (2000) Effects of B(CH3O)3 content on a PACVD plasma-boriding process. Surf Coat Technol 131:291–293CrossRefGoogle Scholar
  219. Qin S, McTeer A (2007) Characterization and optimization of a plasma doping process using a pulsed RF-excited B2H6 plasma system. Surf Coat Technol 201:6759–6767CrossRefGoogle Scholar
  220. Qin L, Qu JZ, Lin NM, Fan AL, Chang DQ, Tang B (2006) Plasma boronizing of Ti6Al4V using solid precursors by double glow plasma alloying technique. Trans Nonferrous Metals Soc Chin 16(3):S2082–S2085Google Scholar
  221. Qin L, Tian L, Fan A, Tang B, Xu Z (2007) Fatigue behavior of surface modified Ti–6Al–4V alloy by double glow discharge plasma alloying. Surf Coat Technol 201:5282–5285CrossRefGoogle Scholar
  222. Qin L, Yang K, Liu C, Tang B (2012) Enhanced plasma boriding with molybdenum using double glow plasma surface alloying technique. Mater Lett 82:127–129CrossRefGoogle Scholar
  223. Qin L, Liu C, Yang K, Tang B (2013) Characteristics and wear performance of borided Ti6Al4V alloy prepared by double glow plasma surface alloying. Surf Coat Technol 225:92–96CrossRefGoogle Scholar
  224. Rachidi R, El Kihel B, Delaunois F, Vitry V, Deschuyteneer D (2017) Wear performance of thermally sprayed NiCrBSi and NiCrBSi–WC coatings under two different wear modes. J Mater Environ Sci 8(12):4550–4559Google Scholar
  225. Rao GR, Lee EH, Chin BA, Mansur LK (1994) Effects of simultaneous boron and nitrogen implantation on microhardness and fatigue properties of Fe–13Cr–15Ni alloys. Metall Mater Trans A 25A:193–202CrossRefGoogle Scholar
  226. Reuther H, Rauschenbach B, Richter E (1988) Ion implantation in metals-structure, investigations and applications. Vacuum 38(11):971–987CrossRefGoogle Scholar
  227. Riabkina-Fishman M, Zahavi J (1996) Laser alloying and cladding for improving surface properties. Appl Surf Sci 106:263–267CrossRefGoogle Scholar
  228. Rie KT (1999) Recent advances in plasma diffusion processes. Surf Coat Technol 112:56–62CrossRefGoogle Scholar
  229. Risbud SH, Shan CH (1995) Fast consolidation of ceramic powders. Mater Sci Eng A 204:146–151CrossRefGoogle Scholar
  230. Roliński E (2014) Plasma-assisted nitriding and nitrocarburizing of steel and other ferrous alloys. In: Mittemeijer EJ, Sommers MAJ (eds) Thermochemical surface engineering of steels: improving materials performance. Woodhead Publishing Series in Metals and Surface Engineering, Number 62, pp 413–457CrossRefGoogle Scholar
  231. Rykalin NN, Uglov AA, Zuev IV, Kokora AN (1985) Laser and electron beam treatment of materials. In Russian, Handbook Publication Masinostroenye, MoscowGoogle Scholar
  232. Safonov AN (1998) Special features of boronizing iron and steels using a continuous-wave CO2 laser. Metal Sci Heat Treat (Metallovedenie i Termicheskaya Obrabotka Metallov) 1:5–9Google Scholar
  233. Sakata K, Nakano K, Miyahara H, Matsubara Y, Ogi K (2007) Microstructure control of thermally sprayed Co-Based self-fluxing alloy coatings by diffusion treatment. J Therm Spray Technol 16(5–6):991–997CrossRefGoogle Scholar
  234. Senthil Selvan J, Subramanian K, Nath AK, Kumar H, Ramachandra C, Ravindranathan SP (1999) Laser boronising of Ti–6Al–4V as a result of laser alloying with pre-placed BN. Mater Sci Eng A 260:178–187CrossRefGoogle Scholar
  235. Shadrin YS, Belkin PN (2012) Analysis of models for calculation of temperature of anode plasma electrolytic heating. Int J Heat Mass Transf 55:179–186CrossRefGoogle Scholar
  236. Shankar P, Karthikeyan NR, Kamaraj M, Angelo PC (2010) Laser modification of detonation-gun sprayed ferro-boron coatings on AISI 304L SS. Trans Indian Inst Met 63(4):751–756CrossRefGoogle Scholar
  237. Shao J, Jones EC, Cheung NW (1997) Shallow junction formation by plasma immersion ion implantation. Surf Coat Technol 93:254–257CrossRefGoogle Scholar
  238. Sharma P, Majumdar JD (2012) Surface characterization and mechanical properties’ evaluation of boride-dispersed nickel-based coatings deposited on copper through thermal spray routes. J Therm Spray Technol 21(5):800–809CrossRefGoogle Scholar
  239. Sharma P, Majumdar JD (2013) Microstructural characterization and properties evaluation of Ni-based hardfaced coating on AISI 304 stainless steel by high velocity oxyfuel coating technique. Metall Mater Trans A 44A:372–380CrossRefGoogle Scholar
  240. Sharma P, Majumdar JD (2014) Nano-borides and silicide dispersed composite coating on AISI 304 stainless steel by laser-assisted HVOF spray deposition. J Therm Spray Technol 23(7):1105–1115CrossRefGoogle Scholar
  241. Sharma P, Majumdar JD (2015) Microstructural characterization and wear behavior of nano-boride dispersed coating on AISI 304 stainless steel by hybrid high velocity oxy-fuel spraying laser surface melting. Metall Mater Trans A 46A:3157–3165CrossRefGoogle Scholar
  242. Shrestha S, Neville A, Hodgkiess T (2001) The effect of post-treatment of a high-velocity oxy-fuel Ni–Cr–Mo–Si–B coating part I: microstructure/corrosion behavior relationships. J Therm Spray Technol 10(3):470–479CrossRefGoogle Scholar
  243. Shrivastava S, Jain A, Singh C (1995) Sliding behaviour of boron ion-implanted 304 stainless steel. Acta Metall Mater 43(1):59–63CrossRefGoogle Scholar
  244. Shrivastava S, Jain A, Tarey RD, Avasthi DK, Kabiraj D, Senapati L, Mehta GK (1996) Hardening of steel by boron ion implantation—dependence on phase composition. Vacuum 47(3):247–249CrossRefGoogle Scholar
  245. Shu FY, Liu S, Zhao HY, He WX, Sui SH, Zhang J, He P, Xu BS (2018) Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder. J Alloy Compd 731:662–666CrossRefGoogle Scholar
  246. Shulov VA (1994) Effect of ion implantation on the chemical composition and structure of surface layers of heat-resistant alloys. Russ Phys J 37(5):462–477CrossRefGoogle Scholar
  247. Sidhu TS, Prakash S, Agrawal RD (2006) Hot corrosion behaviour of HVOF-sprayed NiCrBSi coatings on Ni- and Fe-based superalloys in Na2SO4–60% V2O5 environment at 900 °C. Acta Mater 54:773–784CrossRefGoogle Scholar
  248. Sigolo E, Soyama J, Zepon G, Shyinti Kiminami C, Botta WJ, Bolfarini C (2016) Wear resistant coatings of boron-modified stainless steels deposited by plasma transferred arc. Surf Coatings Technol 302:255–264CrossRefGoogle Scholar
  249. Sikorski K, Wierzchoń T, Bieliński P (1998) X-ray microanalysis and properties of multicomponent plasma-borided layers on steel. J Mater Sci 33:811–815CrossRefGoogle Scholar
  250. Sizov IG (2003) Mössbauer spectroscopy of boride layer after electron-beam treatment. Metal Sci Heat Treat (Metallovedenie i Termicheskaya Obrabotka Metallov) 9:22–25Google Scholar
  251. Sizov IG, Smirnyagina NN, Semenov AP (1999) Special features of electron-beam boronizing of steels. Metal Sci Heat Treat (Metallovedenie i Termicheskaya Obrabotka Metallov) 12:8–11Google Scholar
  252. Sizov IG, Smirnyagina NN, Semenov AP (2001) Structure and properties of boride layers deposited by electron-beam and chemico-thermal treatment. Metal Sci Heat Treat (Metallovedenie i Termicheskaya Obrabotka Metallov) 11:45–46Google Scholar
  253. Smirnyagina NN, Sizov IG, Semenov AP, Vandanov AG (2002) Thermodynamic analysis of vacuum synthesis of titanium borides on the surface of carbon steels. Metal Sci Heat Treat (Metallovedenie i Termicheskaya Obrabotka Metallov) 1:32–36Google Scholar
  254. Soboleva NN, Makarov AV, Malygina IY (2018) NiCrBSi coating obtained by laser cladding and subsequent deformation processing. J Phys Conf Ser 946, Article number 012004Google Scholar
  255. Soltani-Farshi M, Baumann H, Rück D, Richter E, Kreissig U, Bethge K (1998) Content of hydrogen in boron-, carbon-, nitrogen-, oxygen-, fluorine and neon-implanted titanium. Surf Coat Technol 103–104:299–303CrossRefGoogle Scholar
  256. Steen WM, Mazumder J (2010) Laser material processing. Springer, LondonCrossRefGoogle Scholar
  257. Stepanov AL, Nuzhdin VI, Galyautdinov MF, Kurbatova NV, Valeev VF, Vorobev VV, Osin YuN (2017) A diffraction grating created in diamond substrate by boron ion implantation. Tech Phys Lett 43(1):104–106CrossRefGoogle Scholar
  258. Storozhenko MS, Umanskii AP, Terentiev AE, Zakiev IM (2017) Effect of the structure of TiB2–(Fe–Mo) plasma coatings on mechanical and tribotechnical properties. Powder Metall Metal Ceram (Poroshkovaya Metallurgiya) 56(1–2):60–69Google Scholar
  259. Sucharski GB, Pukasiewicz AGM, Váz RF, Paredes RSC (2015) Optimization of the deposition parameters of HVOF FeMnCrSi + Ni + B thermally sprayed coatings. Soldagem Inspeção 20(2):238–252CrossRefGoogle Scholar
  260. Sudha C, Shankar P, Subba Rao RV, Thirumurugesan R, Vijayalakshmi M, Raj B (2008) Microchemical and microstructural studies in a PTA weld overlay of Ni–Cr–Si–B alloy on AISI 304L stainless steel. Surf Coat Technol 202:2103–2112CrossRefGoogle Scholar
  261. Taheri P, Dehghanian C, Aliofkhazraei M, Sabour Rouhaghdam A (2007a) Evaluation of nanocrystalline microstructure, abrasion, and corrosion properties of carbon steel treated by plasma electrolytic boriding. Plasma Process Polym 4:S711–S716CrossRefGoogle Scholar
  262. Taheri P, Dehghanian C, Aliofkhazraei M, Sabour Rouhaghdam A (2007b) Corrosion properties of plasma electrolytic coated samples. Anti-Corros Methods Mater 54(3):148–154CrossRefGoogle Scholar
  263. Taheri P, Dehghanian C, Aliofkhazraei M, Sabour Rouhaghdam A (2007c) Nanocrystalline structure produced by complex surface treatments: plasma electrolytic nitrocarburizing, boronitriding, borocarburizing, and borocarbonitriding. Plasma Process Polym 4:S721–S727CrossRefGoogle Scholar
  264. Taillon G, Pougoum F, Lavigne S, Ton-That L, Schulz R, Bousser E, Savoie S, Martinu L, Klemberg-Sapieha JE (2016) Cavitation erosion mechanisms in stainless steels and in composite metal–ceramic HVOF coatings. Wear 364–365:201–210CrossRefGoogle Scholar
  265. Tarasenko YP, Romanov IG, Chmykhov AA, Tsareva IN, Krivina LA, Varenova NG (1998) Effect of preliminary treatment on the titanium surface condition before TiN coating deposition. Fiz Khim Obrab Mater 4:49–52Google Scholar
  266. Tavakoli H, Mousavi Khoie SM, Rasooli F, Marashi SPH, Momeni F (2015) Electrochemical and physical characteristics of the steel treated by plasma-electrolysis boronizing. Surf Coat Technol 276:529–533CrossRefGoogle Scholar
  267. Tayal M, Mukherjee K (1994) Localized boriding of low-carbon steel using a Nd:YAG laser. J Mater Sci 29:5699–5702CrossRefGoogle Scholar
  268. Teker T, Karataş S, Yilmaz SO (2013) The coating of FeB, FeTi, FeW powders on AISI 430 stainless steel by PTA. J Optoelectron Adv Mater 15(3–4):284–293Google Scholar
  269. Thiemann KG, Ebsen H, Marquering M, Vinke T, Haferkamp H (1990) Reparaturbeschichten von Turbinenschaufeln. Laser-Praxis, October, pp 101–106Google Scholar
  270. Tian YS (2010) Growth mechanism of the tubular TiB crystals in situ formed in the coatings laser-borided on Ti–6Al–4V alloy. Mater Lett 64:2483–2486CrossRefGoogle Scholar
  271. Tian YS, Chen CZ, Wang DY, Lei TQ (2005a) Surface modification of pure Ti by laser alloying with B and Ni mixed powders. Adv Eng Mater 7(7):629–632CrossRefGoogle Scholar
  272. Tian YS, Chen CZ, Wang DY, Huo QH, Lei TQ (2005b) Laser surface alloying of pure titanium with TiN–B–Si–Ni mixed powders. Appl Surf Sci 250:223–227CrossRefGoogle Scholar
  273. Tian YS, Chen CZ, Chen LB, Chen LX (2006a) Study on the microstructure and wear resistance of the composite coatings fabricated on Ti–6Al–4V under different processing conditions. Appl Surf Sci 253:1494–1499CrossRefGoogle Scholar
  274. Tian YS, Chen CZ, Chen LX, Huo QH (2006b) Effect of RE oxides on the microstructure of the coatings fabricated on titanium alloys by laser alloying technique. Scripta Mater 54:847–852CrossRefGoogle Scholar
  275. Tian YS, Zhang QY, Wang DY, Chen CZ (2008) Analysis of the growth morphology of TiB and the microstructure refinement of the coatings fabricated on Ti–6Al–4V by laser boronizing. Cryst Growth Des 8(2):700–703CrossRefGoogle Scholar
  276. Tian YS, Zhang QY, Wang DY (2009) Study on the microstructures and properties of the boride layers laser fabricated on Ti–6Al–4V alloy. J Mater Process Technol 209:2887–2891CrossRefGoogle Scholar
  277. Tillmann W, Hollingsworth PS, Fischer G, Nellesen J, Beckmann F (2014) Development and characterization of B4C reinforced detonation-sprayed Al coatings. J Therm Spray Technol 23(3):289–295CrossRefGoogle Scholar
  278. TRUMPF Technical information (2007) Laser processing. CO2 laser. Technical documentation of TRUMPF Werkzeugmaschinen GmbH + Co. KGGoogle Scholar
  279. Trzciński M, Kavetskyy T, Telbiz G, Stepanov AL (2017) Optical characterization of nanocomposite polymer formed by ion implantation of boron. J Mater Sci Mater Electron 28:7115–7120CrossRefGoogle Scholar
  280. Ueda M, Silva AR, Pillaca EJDM, Mariano SFM, Oliveira RM, Rossi JO, Lepienski CM, Pichon L (2016) New method of plasma immersion ion implantation and also deposition of industrial components using tubular fixture and plasma generated inside the tube by high voltage pulses. Rev Sci Instrum 87, Article number 013902CrossRefGoogle Scholar
  281. Ueda M, Silva AR, Pillaca EJDM, Mariano SFM, Rossi JO, Oliveira RM, Pichon L, Reuther H (2017) New possibilities of plasma immersion ion implantation (PIII) and deposition (PIII&D) in industrial components using metal tube fixtures. Surf Coat Technol 312:37–46CrossRefGoogle Scholar
  282. Uglov VV, Rusalsky DP, Khodasevich VV, Kholmetskii AL, Wei R, Vajo JJ, Rumyanceva IN, Wilbur PJ (1998) Modified layer formation by means of high current density nitrogen and boron implantation. Surf Coatings Technol 103–104:317–322CrossRefGoogle Scholar
  283. Uglov VV, Kholmetskii AL, Kuleshov AK, Rusalsky DP, Rumyanceva IN, Wei R, Vajo JJ (2002) Phase transformation of high speed steel after sequential nitrogen and boron high current density ions implantation. Surf Coat Technol 158–159:349–355CrossRefGoogle Scholar
  284. Umanskii AP, Storozhenko MS, Hussainova IV, Terentiev AE, Kovalchenko AM, Antonov MM (2015) Structure, phase composition, and wear mechanism of plasma-sprayed NiCrSiB–20 wt.% TiB2 coating. Powder Metall Metal Ceram (Poroshkovaya Metallurgiya) 53(11–12):663–671CrossRefGoogle Scholar
  285. Utu D, Marginean G, Pogan C, Brandl W, Serban VA (2007) Improvement of the wear resistance of titanium alloyed with boron nitride by electron beam irradiation. Surf Coat Technol 201:6387–6391CrossRefGoogle Scholar
  286. Vervisch V, Larmande Y, Delaporte P, Sarnet T, Sentis M, Etienne H, Torregrosa F, Cristiano F, Fazzini PF (2009) Laser activation of ultra shallow junctions (USJ) doped by plasma immersion ion implantation (PIII). Appl Surf Sci 255:5647–5650CrossRefGoogle Scholar
  287. Vilar R (1999) Laser cladding. J Laser Appl 11(2):64–79CrossRefGoogle Scholar
  288. Wang P, Sun X, Zhang J, Zhang G (1991) The microstructures and composition profiles of iron implanted with combinations of Ni. Mo B Ions Vacuum 42(7):477–483Google Scholar
  289. Wang B, Xue W, Wu J, Jin X, Hua M, Wu Z (2013a) Characterization of surface hardened layers on Q235 low-carbon steel treated by plasma electrolytic borocarburizing. J Alloy Compd 578:162–169CrossRefGoogle Scholar
  290. Wang B, Jin X, Xue W, Wu Z, Du J, Wu J (2013b) High temperature tribological behaviors of plasma electrolytic borocarburized Q235 low-carbon steel. Surf Coat Technol 232:142–149CrossRefGoogle Scholar
  291. Wang W, Jin L, Yang J, Sun F (2013c) Directional growth whisker reinforced Ti-base composites fabricated by laser cladding. Surf Coat Technol 236:45–51CrossRefGoogle Scholar
  292. Wang Y, Zhang P, Wu H, Wei D, Wei X, Zhou P (2014) Tribological properties of double-glow plasma surface niobizing on low-carbon steel. Tribol Trans 57:786–792CrossRefGoogle Scholar
  293. Wang B, Xue W, Wu Z, Jin X, Wu J, Du J (2015a) Influence of discharge time on properties of plasma electrolytic borocarburized layers on Q235 low-carbon steel. Mater Chem Phys 168:10–17CrossRefGoogle Scholar
  294. Wang H, Li H, Zhu H, Cheng F, Wang D, Li Z (2015b) A comparative study of plasma sprayed TiB2–NiCr and Cr3C2–NiCr composite coatings. Mater Lett 153:110–113CrossRefGoogle Scholar
  295. Wang Y, Sun C, Sun J, Zhao W, Dong L, Li L, Meng F (2015c) Erosion behavior of arc sprayed FeTi/CrB MMC coating at elevated temperature. Surf Coat Technol 262:141–147CrossRefGoogle Scholar
  296. Wei D, Zhang P, Yao Z, Zhou J, Wei X, Chen X (2015) Double glow plasma chromizing of Ti6Al4V alloys: impact of working time, substrate-target distance, argon pressure and surface temperature of substrate. Vacuum 121:81–87CrossRefGoogle Scholar
  297. Werner Z, Piekoszewski J, Grötzschel R, Richter E, Szymczyk W (2003) Resistance to high-temperature oxidation in B + Si implanted TiN coatings on steel. Vacuum 70:93–96CrossRefGoogle Scholar
  298. Wierzchoń T (1988) The role of glow discharge in the formation of a boride layer on steel in the plasma boriding process. Advances in low-temperature plasma chemistry, technology, applications, vol 2. Technomic Publishing Co. INC., Lancaster-Basel, USAGoogle Scholar
  299. Wierzchoń T, Bogacki J, Karpiński T (1980) Use of glow discharge for ion siliciding and boriding. Metal Sci Heat Treat (Metallovedenie i Termicheskaya Obrabotka Metallov) 3:16–17Google Scholar
  300. Wierzchoń T, Michalski J, Karpiński T (1982) Formation and properties of the diffusion borided layers obtained on steel by glow discharge. In: Conference materials: 2nd international congress on heat treatment of materials of IFHT and 1st national conference on metallurgical coatings of AIV, Florence, Italy, Code 4105Google Scholar
  301. Wierzchoń T, Pokrasen S, Karpiński T (1983) Plasmaborieren—Faktoren, die die Keimbildung der Boridschicht auf Stahl bedingen (Plasma boriding—factors causing nucleation of the boride layer on steel). Haerterei-Technische Mitteilungen 38(2):57–62Google Scholar
  302. Wierzchoń T, Bieliński P, Sikorski K (1995) Formation and properties of multicomponent and composite borided layers on steel. Surf Coat Technol 73:121–124CrossRefGoogle Scholar
  303. Winter KM, Kalucki J, Koshel D (2014) Process technologies for thermochemical surface engineering. In: Mittemeijer EJ, Sommers MAJ (eds) Thermochemical surface engineering of steels: improving materials performance. Woodhead Publishing Series in Metals and Surface Engineering, Number 62, pp 141–206CrossRefGoogle Scholar
  304. Wiśniewski K, Pertek A (2009) Influence of laser alloying with amorphous boron on microstructure and hardness of 41Cr4. Archiv Metall Mater 54(1):111–114Google Scholar
  305. Wu Y, Lin P, Xie G, Hua J, Cao M (2006) Formation of amorphous and nanocrystalline phases in high velocity oxy-fuel thermally sprayed a Fe–Cr–Si–B–Mn alloy. Mater Sci Eng A 430:34–39CrossRefGoogle Scholar
  306. Wu Y, Lin P, Chu C, Wang Z, Cao M, Hu J (2007) Cavitation erosion characteristics of a Fe–Cr–Si–B–Mn coating fabricated by high velocity oxy-fuel (HVOF) thermal spray. Mater Lett 61:1867–1872CrossRefGoogle Scholar
  307. Wu Y, Lin P, Wang Z, Li G (2009) Microstructure and microhardness characterization of a Fe-based coating deposited by high-velocity oxy-fuel thermal spraying. J Alloy Compd 481:719–724CrossRefGoogle Scholar
  308. Wu Q, Li W, Zhong N, Wang G (2015) Microstructure and properties of laser-clad Mo2NiB2 cermet coating on steel substrate. Steel Res Int 86(3):293–301CrossRefGoogle Scholar
  309. Xu Z, Gao Y, He Z, Xu Z, Su Y (2002) Plasma surface metallurgy technology. J Adv Mater 34(3):32–36Google Scholar
  310. Xu Z, Liu X, Zhang P, Zhang Y, Zhang G, He Z (2007) Double glow plasma surface alloying and plasma nitriding. Surf Coat Technol 201:4822–4825CrossRefGoogle Scholar
  311. Yang G, Zu-kun H, Xiaolei X, Gang X (2001) Formation of molybdenum boride cermet coating by the detonation spray process. J Therm Spray Technol 10(3):456–460CrossRefGoogle Scholar
  312. Yang HP, Wu XC, Min YA, Wu TR, Gui JZ (2013) Plasma boriding of high strength alloy steel with nanostructured surface layer at low temperature assisted by air blast shot peening. Surf Coat Technol 228:229–233CrossRefGoogle Scholar
  313. Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ (1999) Plasma electrolysis for surface engineering. Surf Coat Technol 122:73–93CrossRefGoogle Scholar
  314. Ynsa MD, Agulló-Rueda F, Gordillo N, Maira A, Moreno-Cerrada D, Ramos MA (2017) Study of the effects of focused high-energy boron ion implantation in diamond. Nucl Instrum Methods Phys Res B 404:207–210CrossRefGoogle Scholar
  315. Yoon JH, Jee YK, Lee SY (1999) Plasma paste boronizing treatment of the stainless steel AISI 304. Surf Coat Technol 112:71–75CrossRefGoogle Scholar
  316. Yu LG, Khor KA, Sundararajan G (2002) Boriding of mild steel using the spark plasma sintering (SPS) technique. Surf Coat Technol 157:226–230CrossRefGoogle Scholar
  317. Yu LG, Chen XJ, Khor KA, Sundararajan G (2005) FeB/Fe2B phase transformation during SPS pack-boriding: boride layer growth kinetics. Acta Mater 53:2361–2368CrossRefGoogle Scholar
  318. Yu LG, Khor KA, Sundararajan G (2006) Boride layer growth kinetics during boriding of molybdenum by the Spark Plasma Sintering (SPS) technology. Surf Coat Technol 201:2849–2853CrossRefGoogle Scholar
  319. Zhang GH, He ZY, Pan JD, Zhang PZ, Xu Z (2005) Mechanical and tribological properties of Ti6Al4V hardened by double glow plasma hydrogen-free carbonitriding. Mater Sci Forum 475–479:3951–3954CrossRefGoogle Scholar
  320. Zhao Z, Li H, Yang T, Zhu H (2018) Tribological properties of HVOF-sprayed TiB2–NiCr coatings with agglomerated feedstocks. J Therm Spray Technol 27(4):718–726CrossRefGoogle Scholar
  321. Zhu Y-C, Fujita K, Iwamoto N, Nagasaka H, Kataoka T (2002) Influence of boron ion implantation on the wear resistance of TiAlN coatings. Surf Coat Technol 158–159:664–668CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Materials Science and EngineeringPoznań University of TechnologyPoznańPoland

Personalised recommendations