The Shoulder pp 301-320 | Cite as

Imaging of Pediatric Disorders of the Shoulder

  • Jorge Delgado
  • Diego Jaramillo


During childhood, the structures of the shoulder become progressively ossified. Their contour, however, is similar to the ossified structures of the adult. There are physis at the chondro-osseous junction of the glenoid and the base of the coracoid which can be confused with injuries. The acromion ossifies in an oblique fashion and there is never a coronal oriented physis joining the posterior to the anterior acromion. The humeral epiphysis has multiple ossification centers that become fatty during the first year of life. The physis of the proximal humerus has a uniform thickness and is separated from the rest of the bone by a well-defined zone of provisional calcification.

Dysplasia of the glenoid is primarily seen as a sequela of brachial plexus injury. The humeral head subluxes posteriorly and the glenoid loses its posterior concavity. There is marked atrophy of several of the muscles. Ultrasound and later MRI are important to define the displacement of the humeral head and the glenoid version.

Infections occur primarily in the metaphysis of the proximal humerus. Trauma can affect the physis in unique ways. In the neonatal period, birth-related trauma can result in epiphyseal separation. In the adolescent, particularly in baseball players, the physis can become wide and irregular with partial loss of the zone of provisional calcification. The proximal humeral epiphysis is one of the most common sites of chondroblastoma. Osteochondromas can occur along the physes of the scapula. The metaphysis of the humerus is one of the common sites for osteosarcoma and Ewing sarcoma.

Familiarity with the normal pattern of ossification and marrow transformation is fundamental for the understanding of childhood diseases affecting the scapula.


Epiphysis Physis Growth Development Dysplasia Children 


  1. 1.
    Chauvin NA, Jaimes C, Laor T, Jaramillo D. Magnetic resonance imaging of the pediatric shoulder. Magn Reson Imaging Clin N Am. 2012;20(2):327–47.. xiPubMedCrossRefGoogle Scholar
  2. 2.
    Rockwood CA. The shoulder. Philadelphia, PA: Saunders/Elsevier; 2009.. Connect to full textGoogle Scholar
  3. 3.
    Laor T, Jaramillo D. MR imaging insights into skeletal maturation: what is normal? Radiology. 2009;250(1):28–38.PubMedCrossRefGoogle Scholar
  4. 4.
    Kwong S, Kothary S, Poncinelli LL. Skeletal development of the proximal humerus in the pediatric population: MRI features. AJR Am J Roentgenol. 2014;202(2):418–25.PubMedCrossRefGoogle Scholar
  5. 5.
    Clarke SE, Chafetz RS, Kozin SH. Ossification of the proximal humerus in children with residual brachial plexus birth palsy: a magnetic resonance imaging study. J Pediatr Orthop. 2010;30(1):60–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Zember JS, Rosenberg ZS, Kwong S, Kothary SP, Bedoya MA. Normal skeletal maturation and imaging pitfalls in the pediatric shoulder. Radiographics. 2015;35(4):1108–22.PubMedCrossRefGoogle Scholar
  7. 7.
    Johnston PS, Paxton ES, Gordon V, Kraeutler MJ, Abboud JA, Williams GR. Os acromiale: a review and an introduction of a new surgical technique for management. Orthop Clin North Am. 2013;44(4):635–44.PubMedCrossRefGoogle Scholar
  8. 8.
    Roedl JB, Morrison WB, Ciccotti MG, Zoga AC. Acromial apophysiolysis: superior shoulder pain and acromial nonfusion in the young throwing athlete. Radiology. 2015;274(1):201–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Kothary S, Rosenberg ZS, Poncinelli LL, Kwong S. Skeletal development of the glenoid and glenoid-coracoid interface in the pediatric population: MRI features. Skelet Radiol. 2014;43(9):1281–8.CrossRefGoogle Scholar
  10. 10.
    Kim HK, Emery KH, Salisbury SR. Bare spot of the glenoid fossa in children: incidence and MRI features. Pediatr Radiol. 2010;40(7):1190–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Ly JQ, Bui-Mansfield LT, Kline MJ, DeBerardino TM, Taylor DC. Bare area of the glenoid: magnetic resonance appearance with arthroscopic correlation. J Comput Assist Tomogr. 2004;28(2):229–32.PubMedCrossRefGoogle Scholar
  12. 12.
    Zawin JK, Jaramillo D. Conversion of bone marrow in the humerus, sternum, and clavicle: changes with age on MR images. Radiology. 1993;188(1):159–64.PubMedCrossRefGoogle Scholar
  13. 13.
    Bedoya MA, Jaimes C, Khrichenko D, Delgado J, Dardzinski BJ, Jaramillo D. Dynamic gadolinium-enhanced MRI of the proximal femur: preliminary experience in healthy children. AJR Am J Roentgenol. 2014;203(4):W440–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Somashekar D, Yang LJ, Ibrahim M, Parmar HA. High-resolution MRI evaluation of neonatal brachial plexus palsy: a promising alternative to traditional CT myelography. AJNR Am J Neuroradiol. 2014;35(6):1209–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Foad SL, Mehlman CT, Ying J. The epidemiology of neonatal brachial plexus palsy in the United States. J Bone Joint Surg Am. 2008;90(6):1258–64.PubMedCrossRefGoogle Scholar
  16. 16.
    Pondaag W, Malessy MJ, van Dijk JG, Thomeer RT. Natural history of obstetric brachial plexus palsy: a systematic review. Dev Med Child Neurol. 2004;46(2):138–44.PubMedCrossRefGoogle Scholar
  17. 17.
    Yang LJ. Neonatal brachial plexus palsy--management and prognostic factors. Semin Perinatol. 2014;38(4):222–34.PubMedCrossRefGoogle Scholar
  18. 18.
    Narakas AO. Injures to the brachial plexus. In: Bora FWJ, editor. The pediatric upper extremity. Philadelphia: W.B. Saunders Co; 1986. p. 247–58.Google Scholar
  19. 19.
    Steens SC, Pondaag W, Malessy MJ, Verbist BM. Obstetric brachial plexus lesions: CT myelography. Radiology. 2011;259(2):508–15.PubMedCrossRefGoogle Scholar
  20. 20.
    Hogendoorn S, van Overvest KL, Watt I, Duijsens AH, Nelissen RG. Structural changes in muscle and glenohumeral joint deformity in neonatal brachial plexus palsy. J Bone Joint Surg Am. 2010;92(4):935–42.PubMedCrossRefGoogle Scholar
  21. 21.
    Moukoko D, Ezaki M, Wilkes D, Carter P. Posterior shoulder dislocation in infants with neonatal brachial plexus palsy. J Bone Joint Surg Am. 2004;86-A(4):787–93.CrossRefGoogle Scholar
  22. 22.
    Waters PM, Smith GR, Jaramillo D. Glenohumeral deformity secondary to brachial plexus birth palsy. J Bone Joint Surg Am. 1998;80(5):668–77.PubMedCrossRefGoogle Scholar
  23. 23.
    Poyhia TH, Nietosvaara YA, Remes VM, Kirjavainen MO, Peltonen JI, Lamminen AE. MRI of rotator cuff muscle atrophy in relation to glenohumeral joint incongruence in brachial plexus birth injury. Pediatr Radiol. 2005;35(4):402–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Kozin SH. Correlation between external rotation of the glenohumeral joint and deformity after brachial plexus birth palsy. J Pediatr Orthop. 2004;24(2):189–93.PubMedCrossRefGoogle Scholar
  25. 25.
    Emery KH. MR imaging in congenital and acquired disorders of the pediatric upper extremity. Magn Reson Imaging Clin N Am. 2009;17(3):549–70.. viiPubMedCrossRefGoogle Scholar
  26. 26.
    Robinson TW, Corlette J, Collins CL, Comstock RD. Shoulder injuries among US high school athletes, 2005/2006-2011/2012. Pediatrics. 2014;133(2):272–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Zbojniewicz AM, Maeder ME, Emery KH, Salisbury SR. Rotator cuff tears in children and adolescents: experience at a large pediatric hospital. Pediatr Radiol. 2014;44(6):729–37.PubMedCrossRefGoogle Scholar
  28. 28.
    Caird MS. Clavicle shaft fractures: are children little adults? J Pediatr Orthop. 2012;32(Suppl 1):S1–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Goldfisher R, Amodio J. Separation of the proximal humeral epiphysis in the newborn: rapid diagnosis with ultrasonography. Case Rep Pediatr. 2015;2015:825413.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Pahlavan S, Baldwin KD, Pandya NK, Namdari S, Hosalkar H. Proximal humerus fractures in the pediatric population: a systematic review. J Child Orthop. 2011;5(3):187–94.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Reid S, Liu M, Ortega H. Anterior shoulder dislocations in pediatric patients: are routine prereduction radiographs necessary? Pediatr Emerg Care. 2013;29(1):39–42.PubMedCrossRefGoogle Scholar
  32. 32.
    Jaimes C, Chauvin NA, Delgado J, Jaramillo D. MR imaging of normal epiphyseal development and common epiphyseal disorders. Radiographics. 2014;34(2):449–71.PubMedCrossRefGoogle Scholar
  33. 33.
    Obembe OO, Gaskin CM, Taffoni MJ, Anderson MW. Little Leaguer’s shoulder (proximal humeral epiphysiolysis): MRI findings in four boys. Pediatr Radiol. 2007;37(9):885–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Krogstad P. Osteomyelitis. In: Feigin RD, Cherry JD, Demmler-Harrison GJ, Kaplan SL, editors. Textbook of pediatric infectious diseases. 7th ed. Philadelphia: Saunders; 2014. p. 711–27.Google Scholar
  35. 35.
    Peltola H, Paakkonen M. Acute osteomyelitis in children. N Engl J Med. 2014;370(4):352–60.PubMedCrossRefGoogle Scholar
  36. 36.
    Krogstad P. Septic arthritis. In: Feigin RD, Cherry JD, Demmler-Harrison GJ, Kaplan SL, editors. Textbook of pediatric infectious diseases. 7th ed. Philadelphia: Saunders; 2014. p. 711–27.Google Scholar
  37. 37.
    Blickman JG, van Die CE, de Rooy JW. Current imaging concepts in pediatric osteomyelitis. Eur Radiol. 2004;14(Suppl 4):L55–64.PubMedCrossRefGoogle Scholar
  38. 38.
    Ogden JA. Pediatric osteomyelitis and septic arthritis: the pathology of neonatal disease. Yale J Biol Med. 1979;52(5):423–48.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Caksen H, Ozturk MK, Uzum K, Yuksel S, Ustunbas HB, Per H. Septic arthritis in childhood. Pediatr Int. 2000;42(5):534–40.PubMedCrossRefGoogle Scholar
  40. 40.
    Devauchelle-Pensec V, Thepaut M, Pecquery R, Houx L. Managing monoarthritis in children. Joint Bone Spine. 2015;83:25.PubMedCrossRefGoogle Scholar
  41. 41.
    Lejman T, Strong M, Michno P, Hayman M. Septic arthritis of the shoulder during the first 18 months of life. J Pediatr Orthop. 1995;15(2):172–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Hemke R, Nusman CM, van der Heijde DM, Doria AS, Kuijpers TW, Maas M, et al. Frequency of joint involvement in juvenile idiopathic arthritis during a 5-year follow-up of newly diagnosed patients: implications for MR imaging as outcome measure. Rheumatol Int. 2015;35(2):351–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Johnson K, Gardner-Medwin J. Childhood arthritis: classification and radiology. Clin Radiol. 2002;57(1):47–58.PubMedCrossRefGoogle Scholar
  44. 44.
    Colebatch-Bourn AN, Edwards CJ, Collado P, D’Agostino MA, Hemke R, Jousse-Joulin S, et al. EULAR-PReS points to consider for the use of imaging in the diagnosis and management of juvenile idiopathic arthritis in clinical practice. Ann Rheum Dis. 2015;74(11):1946–57.PubMedCrossRefGoogle Scholar
  45. 45.
    Weiss PF, Chauvin NA, Klink AJ, Localio R, Feudtner C, Jaramillo D, et al. Detection of enthesitis in children with enthesitis-related arthritis: dolorimetry compared to ultrasonography. Arthritis Rheumatol. 2014;66(1):218–27.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Martini G, Tregnaghi A, Bordin T, Visentin MT, Zulian F. Rice bodies imaging in juvenile idiopathic arthritis. J Rheumatol. 2003;30(12):2720–1.PubMedGoogle Scholar
  47. 47.
    Harty MP, Mahboubi S, Meyer JS, Hubbard AM. MRI of the pediatric shoulder: nontraumatic lesions. Eur Radiol. 1997;7(3):352–60.PubMedCrossRefGoogle Scholar
  48. 48.
    Ferguson P, Laxer RM. Autoinflammatory bone disorders. In: Cassidy and Petty’s textbook of pediatric rheumatology [Internet]. 7th ed. Philadelphia: Elsevier; 2015. p. 627–41.Google Scholar
  49. 49.
    Walsh P, Manners PJ, Vercoe J, Burgner D, Murray KJ. Chronic recurrent multifocal osteomyelitis in children: nine years’ experience at a statewide tertiary paediatric rheumatology referral centre. Rheumatology (Oxford). 2015;54(9):1688–91.CrossRefGoogle Scholar
  50. 50.
    Ferguson PJ, Sandu M. Current understanding of the pathogenesis and management of chronic recurrent multifocal osteomyelitis. Curr Rheumatol Rep. 2012;14(2):130–41.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Beretta-Piccoli BC, Sauvain MJ, Gal I, Schibler A, Saurenmann T, Kressebuch H, et al. Synovitis, acne, pustulosis, hyperostosis, osteitis (SAPHO) syndrome in childhood: a report of ten cases and review of the literature. Eur J Pediatr. 2000;159(8):594–601.PubMedCrossRefGoogle Scholar
  52. 52.
    Khanna G, Sato TS, Ferguson P. Imaging of chronic recurrent multifocal osteomyelitis. Radiographics. 2009;29(4):1159–77.PubMedCrossRefGoogle Scholar
  53. 53.
    Manson D, Wilmot DM, King S, Laxer RM. Physeal involvement in chronic recurrent multifocal osteomyelitis. Pediatr Radiol. 1989;20(1–2):76–9.PubMedCrossRefGoogle Scholar
  54. 54.
    O’Brien SJ, Neves MC, Arnoczky SP, Rozbruck SR, Dicarlo EF, Warren RF, et al. The anatomy and histology of the inferior glenohumeral ligament complex of the shoulder. Am J Sports Med. 1990;18(5):449–56.PubMedCrossRefGoogle Scholar
  55. 55.
    Helms CA. Benign lytic lesions. In: Fundamentals of skeletal radiology [Internet]. 4th ed. Philadelphia: Saunders; 2014. p. 7–31.Google Scholar
  56. 56.
    Wootton-Gorges SL. MR imaging of primary bone tumors and tumor-like conditions in children. Magn Reson Imaging Clin N Am. 2009;17(3):469–87, viPubMedCrossRefGoogle Scholar
  57. 57.
    Schuppers HA, van der Eijken JW. Chondroblastoma during the growing age. J Pediatr Orthop B. 1998;7(4):293–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Jee WH, Park YK, McCauley TR, Choi KH, Ryu KN, Suh JS, et al. Chondroblastoma: MR characteristics with pathologic correlation. J Comput Assist Tomogr. 1999;23(5):721–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Yaw KM. Pediatric bone tumors. Semin Surg Oncol. 1999;16(2):173–83.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jorge Delgado
    • 1
  • Diego Jaramillo
    • 2
  1. 1.Department of RadiologyHarvard Medical School, Massachusetts General HospitalBostonUSA
  2. 2.Department of RadiologyColumbia University Medical CenterNew YorkUSA

Personalised recommendations