The Shoulder pp 269-299 | Cite as

Imaging Diagnosis of Tumors and Tumorlike Conditions of the Shoulder

  • Eric A. WalkerEmail author
  • Matthew J. Minn
  • Mark D. Murphey


Anatomic compartments are defined by natural barriers that also limit the spread of a tumor [1]. Local staging of a malignancy depends on which anatomic compartments are involved and this determination is best accomplished with cross-sectional imaging, preferably magnetic resonance imaging (MRI). Although several staging systems exist, they are all based on the histologic grade of the tumor, the local extent of the lesion, and the presence of metastases. Regarding local extent, lesions confined to one specific compartment are considered intracompartmental. Extracompartmental lesions have spread beyond the compartment of origin [1]. Another consideration requiring knowledge of compartmental anatomy is planning a biopsy path. Resection of the biopsy track is no problem if an amputation is performed but may cause significant difficulties in the case of limb-salvage procedures if inappropriately placed. The radiologist must have a clear understanding of the relevant compartmental anatomy for staging a tumor and avoid unnecessarily contaminating uninvolved anatomic compartments during biopsy. When biopsying a bone or soft-tissue tumor it is advisable to discuss your biopsy approach with the surgeon performing the resection. Failure to do so may result in the biopsy tract within an anatomic region needed for limb-sparing surgery. Different compartments specific to the upper extremity and shoulder include the muscles and fascia covering the dorsal scapula (infraspinatus, teres minor, and rhomboid muscles), the supraspinatus and deltoid compartments, and the anterior and posterior compartments of the upper arm (Fig. 12.1) [1]. The anterior compartment contains the biceps, brachialis, coracobrachialis, and brachioradialis muscles. The posterior compartment is primarily the triceps musculature [2]. More general compartments are the skin and subcutaneous fat, the muscle, the nerves and vessels, the parosseous space, the bones, and the joints [2]. When describing a lesion, it is important to note which compartments are involved. When performing a biopsy of the shoulder through the deltoid muscle, the path should be through the anterior deltoid. The axillary nerve innervates the deltoid muscle from posterior to anterior. If a needle track is chosen in the posterior two-thirds of the muscle, the remaining anterior portion of the deltoid may become denervated and functionless after resection of the posterior muscle [2] and may require amputation.


  1. 1.
    Kransdorf MJ, Murphey MD. Imaging of soft tissue tumors. 3rd ed. Philadelphia, PA: Wolters Kluwer, Lippincott Williams & Wilkins; 2013.Google Scholar
  2. 2.
    Anderson MW, Temple HT, Dussault RG, et al. Compartmental anatomy: relevance to staging and biopsy of musculoskeletal tumors. AJR Am J Roentgenol. 1999;173(6):1663–71.PubMedCrossRefGoogle Scholar
  3. 3.
    Madewell JE, Ragsdale BD, Sweet DE. Radiologic and pathologic analysis of solitary bone lesions. Part I: internal margins. Radiol Clin N Am. 1981;19(4):715–48.PubMedGoogle Scholar
  4. 4.
    Miller TT. Bone tumors and tumorlike conditions: analysis with conventional radiography. Radiology. 2008;246(3):662–74.PubMedCrossRefGoogle Scholar
  5. 5.
    Moser RPJ, Madewell JE. An approach to primary bone tumors. Radiol Clin N Am. 1987;25(6):1049–93.PubMedGoogle Scholar
  6. 6.
    Ragsdale BD, Madewell JE, Sweet DE. Radiologic and pathologic analysis of solitary bone lesions. Part II: periosteal reactions. Radiol Clin N Am. 1981;19(4):749–83.PubMedGoogle Scholar
  7. 7.
    Sweet DE, Madewell JE, Ragsdale BD. Radiologic and pathologic analysis of solitary bone lesions. Part III: matrix patterns. Radiol Clin N Am. 1981;19(4):785–814.PubMedGoogle Scholar
  8. 8.
    Kransdorf MJ, Stull MA, Gilkey FW, et al. Osteoid osteoma. Radiographics. 1991;11(4):671–96.PubMedCrossRefGoogle Scholar
  9. 9.
    Dahlin DC, Unni KK. Dahlin's bone tumors. 4th ed. Springfield, Ill: Lippincott Williams & Wilkins; 1987.Google Scholar
  10. 10.
    Huvos AG. Bone tumors, diagnosis, treatment, and prognosis. Philadelphia, PA: Saunders; 1979.Google Scholar
  11. 11.
    Greenspan A, Jundt G, Remagen W. Differential diagnosis in orthopaedic oncology. 2nd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2007.Google Scholar
  12. 12.
    Rosenthal DI, Hornicek FJ, Wolfe MW, et al. Percutaneous radiofrequency coagulation of osteoid osteoma compared with operative treatment. J Bone Joint Surg Am. 1998;80(6):815–21.PubMedCrossRefGoogle Scholar
  13. 13.
    Fletcher CDM. World Health Organization; International Agency for Research on Cancer. WHO classification of tumours of soft tissue and bone. Lyon: IARC Press; 2013.Google Scholar
  14. 14.
    Qasem SA, DeYoung BR. Cartilage-forming tumors. Semin Diagn Pathol. 2014;31(1):10–20.PubMedCrossRefGoogle Scholar
  15. 15.
    Dahlin DC, Ivins JC. Benign chondroblastoma. A study of 125 cases. Cancer. 1972;30(2):401–13.PubMedCrossRefGoogle Scholar
  16. 16.
    Braunstein E, Martel W, Weatherbee L. Periosteal bone apposition in chondroblastoma. Skelet Radiol. 1979;4(1):34–6.CrossRefGoogle Scholar
  17. 17.
    James SL, Panicek DM, Davies AM. Bone marrow oedema associated with benign and malignant bone tumours. Eur J Radiol. 2008;67(1):11–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Murphey MD, Choi JJ, Kransdorf MJ, et al. Imaging of osteochondroma: variants and complications with radiologic-pathologic correlation. Radiographics. 2000;20(5):1407–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Bernard SA, Murphey MD, Flemming DJ, et al. Improved differentiation of benign osteochondromas from secondary chondrosarcomas with standardized measurement of cartilage cap at CT and MR imaging. Radiology. 2010;255(3):857–65.PubMedCrossRefGoogle Scholar
  20. 20.
    Robbin MR, Murphey MD. Benign chondroid neoplasms of bone. Semin Musculoskelet Radiol. 2000;4(1):45–58.PubMedCrossRefGoogle Scholar
  21. 21.
    Robinson P, White LM, Sundaram M, et al. Periosteal chondroid tumors: radiologic evaluation with pathologic correlation. AJR Am J Roentgenol. 2001;177(5):1183–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Logie CI, Walker EA, Forsberg JA, et al. Chondrosarcoma: a diagnostic imager's guide to decision making and patient management. Semin Musculoskelet Radiol. 2013;17(2):101–15.PubMedCrossRefGoogle Scholar
  23. 23.
    Flemming DJ, Murphey MD. Enchondroma and chondrosarcoma. Semin Musculoskelet Radiol. 2000;4(1):59–71.PubMedCrossRefGoogle Scholar
  24. 24.
    Jee WH, Choe BY, Kang HS, et al. Nonossifying fibroma: characteristics at MR imaging with pathologic correlation. Radiology. 1998;209(1):197–202.PubMedCrossRefGoogle Scholar
  25. 25.
    Arata MA, Peterson HA, Dahlin DC. Pathological fractures through non-ossifying fibromas. Review of the Mayo Clinic experience. J Bone Joint Surg Am. 1981;63(6):980–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Unni KK. Dahlin’s bone tumours. 6th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2010.Google Scholar
  27. 27.
    Fitzpatrick KA, Taljanovic MS, Speer DP, et al. Imaging findings of fibrous dysplasia with histopathologic and intraoperative correlation. AJR Am J Roentgenol. 2004;182(6):1389–98.PubMedCrossRefGoogle Scholar
  28. 28.
    Capanna R, Campanacci DA, Manfrini M. Unicameral and aneurysmal bone cysts. Orthop Clin North Am. 1996;27(3):605–14.PubMedGoogle Scholar
  29. 29.
    Mascard E, Gomez-Brouchet A, Lambot K. Bone cysts: unicameral and aneurysmal bone cyst. Orthop Traumatol Surg Res. 2015;101(1 Suppl):S119–27.PubMedCrossRefGoogle Scholar
  30. 30.
    Cohen J. Simple bone cysts. Studies of cyst fluid in six cases with a theory of pathogenesis. J Bone Joint Surg Am. 1960;42-A:609–16.PubMedCrossRefGoogle Scholar
  31. 31.
    Dormans JP, Sankar WN, Moroz L, et al. Percutaneous intramedullary decompression, curettage, and grafting with medical-grade calcium sulfate pellets for unicameral bone cysts in children: a new minimally invasive technique. J Pediatr Orthop. 2005;25(6):804–11.PubMedCrossRefGoogle Scholar
  32. 32.
    Jaffe H, Lichtenstein L. Solitary unicameral bone cyst: with emphasis on the roentgen picture, the pathologic appearance and the pathogenesis. Arch Surg. 1942;44(6):1004–25.CrossRefGoogle Scholar
  33. 33.
    Reynolds J. The "fallen fragment sign" in the diagnosis of unicameral bone cysts. Radiology. 1969;92(5):949–53.PubMedCrossRefGoogle Scholar
  34. 34.
    Kadhim M, Thacker M, Kadhim A, et al. Treatment of unicameral bone cyst: systematic review and meta analysis. J Child Orthop. 2014;8(2):171–91.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Fletcher CDM, Unni KK, Mertens F. World Health Organization; International Agency for Research on Cancer. Pathology and genetics of tumours of soft tissue and bone. Lyon: IARC Press; 2002.Google Scholar
  36. 36.
    Raskin KA, Schwab JH, Mankin HJ, et al. Giant cell tumor of bone. J Am Acad Orthop Surg. 2013;21(2):118–26.PubMedCrossRefGoogle Scholar
  37. 37.
    Moser RPJ, Kransdorf MJ, Gilkey FW, et al. From the archives of the AFIP. Giant cell tumor of the upper extremity. Radiographics. 1990;10(1):83–102.PubMedCrossRefGoogle Scholar
  38. 38.
    Xu SF, Adams B, Yu XC, et al. Denosumab and giant cell tumour of bone-a review and future management considerations. Curr Oncol. 2013;20(5):e442–7.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Dimopoulos MA, Moulopoulos LA, Maniatis A, et al. Solitary plasmacytoma of bone and asymptomatic multiple myeloma. Blood. 2000;96(6):2037–44.PubMedGoogle Scholar
  40. 40.
    Healy CF, Murray JG, Eustace SJ, et al. Multiple myeloma: a review of imaging features and radiological techniques. Bone Marrow Res. 2011;2011:583439.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ludwig H, Kumpan W, Sinzinger H. Radiography and bone scintigraphy in multiple myeloma: a comparative analysis. Br J Radiol. 1982;55(651):173–81.PubMedCrossRefGoogle Scholar
  42. 42.
    Woolfenden JM, Pitt MJ, Durie BG, et al. Comparison of bone scintigraphy and radiography in multiple myeloma. Radiology. 1980;134(3):723–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Resnick D. Frequency and distribution of skeletal metastasis. Diagnosis of Bone and Joint Disorders. 4th ed. Philadelphia, PA: Saunders; 2002.Google Scholar
  44. 44.
    Rubenstein J. Imaging of skeletal metastases. Tech Orthop. 2004;19(1):2–8.CrossRefGoogle Scholar
  45. 45.
    Söderlund V. Radiological diagnosis of skeletal metastases. Eur Radiol. 1996;6(5):587–95.PubMedCrossRefGoogle Scholar
  46. 46.
    Murphey MD, Robbin MR, McRae GA, et al. The many faces of osteosarcoma. Radiographics. 1997;17(5):1205–31.PubMedCrossRefGoogle Scholar
  47. 47.
    Jaffe N, Bruland OS, Bielack S. Pediatric and adolescent osteosarcoma. Boston, MA: Springer; 2010.CrossRefGoogle Scholar
  48. 48.
    Ritter J, Bielack SS. Osteosarcoma. Ann Oncol. 2010;21(Suppl 7):vii320–5.PubMedGoogle Scholar
  49. 49.
    Murphey MD, Walker EA, Wilson AJ, et al. From the archives of the AFIP: imaging of primary chondrosarcoma: radiologic-pathologic correlation. Radiographics. 2003;23(5):1245–78.PubMedCrossRefGoogle Scholar
  50. 50.
    Brenner W, Conrad EU, Eary JF. FDG PET imaging for grading and prediction of outcome in chondrosarcoma patients. Eur J Nucl Med Mol Imaging. 2004;31(2):189–95.PubMedCrossRefGoogle Scholar
  51. 51.
    Murphey MD, Senchak LT, Mambalam PK, et al. From the radiologic pathology archives: Ewing sarcoma family of tumors: radiologic-pathologic correlation. Radiographics. 2013;33(3):803–31.PubMedCrossRefGoogle Scholar
  52. 52.
    Murphey MD, Rhee JH, Lewis RB, et al. Pigmented villonodular synovitis: radiologic-pathologic correlation. Radiographics. 2008;28(5):1493–518.PubMedCrossRefGoogle Scholar
  53. 53.
    Murphey MD, Vidal JA, Fanburg-Smith JC, et al. Imaging of synovial chondromatosis with radiologic-pathologic correlation. Radiographics. 2007;27(5):1465–88.PubMedCrossRefGoogle Scholar
  54. 54.
    Walker EA, Fenton ME, Salesky JS, et al. Magnetic resonance imaging of benign soft tissue neoplasms in adults. Radiol Clin N Am. 2011;49(6):1197–217.PubMedCrossRefGoogle Scholar
  55. 55.
    Murphey MD, Carroll JF, Flemming DJ, et al. From the archives of the AFIP: benign musculoskeletal lipomatous lesions. Radiographics. 2004;24(5):1433–66.PubMedCrossRefGoogle Scholar
  56. 56.
    Salam GA. Lipoma excision. Am Fam Physician. 2002;65(5):901–4.PubMedGoogle Scholar
  57. 57.
    Walker EA, Song AJ, Murphey MD. Magnetic resonance imaging of soft-tissue masses. Semin Roentgenol. 2010;45(4):277–97.PubMedCrossRefGoogle Scholar
  58. 58.
    Walker EA, Petscavage JM, Brian PL, et al. Imaging features of superficial and deep fibromatoses in the adult population. Sarcoma. 2012;2012:215810.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    El-Haddad M, El-Sebaie M, Ahmad R, et al. Treatment of aggressive fibromatosis: the experience of a single institution. Clin Oncol (R Coll Radiol). 2009;21(10):775–80.CrossRefGoogle Scholar
  60. 60.
    Gounder MM, Lefkowitz RA, Keohan ML, et al. Activity of Sorafenib against desmoid tumor/deep fibromatosis. Clin Cancer Res. 2011;17(12):4082–90.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Rockwood CAJ, Matsen FA III, Wirth MA, et al. Tumors and related conditions. The shoulder. 4th ed. Philadelphia, PA: Elsevier; 2009.Google Scholar
  62. 62.
    Walker EA, Salesky JS, Fenton ME, et al. Magnetic resonance imaging of malignant soft tissue neoplasms in the adult. Radiol Clin N Am. 2011;49(6):1219–34.PubMedCrossRefGoogle Scholar
  63. 63.
    Petscavage-Thomas JM, Walker EA, Logie CI, et al. Soft-tissue myxomatous lesions: review of salient imaging features with pathologic comparison. Radiographics. 2014;34(4):964–80.PubMedCrossRefGoogle Scholar
  64. 64.
    Walker E, Brian P, Longo V, et al. Dilemmas in distinguishing between tumor and the posttraumatic lesion with surgical or pathologic correlation. Clin Sports Med. 2013;32(3):559–76.PubMedCrossRefGoogle Scholar
  65. 65.
    Smith SE, Murphey MD, Motamedi K, et al. From the archives of the AFIP. Radiologic spectrum of Paget disease of bone and its complications with pathologic correlation. Radiographics. 2002;22(5):1191–216.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Eric A. Walker
    • 1
    • 2
    Email author
  • Matthew J. Minn
    • 3
  • Mark D. Murphey
    • 3
    • 2
    • 4
  1. 1.Department of RadiologyMilton S. Hershey Medical CenterHersheyUSA
  2. 2.Departments of Radiology and Nuclear MedicineUniformed Services University of the Health SciencesBethesdaUSA
  3. 3.American Institute for Radiologic PathologySilver SpringUSA
  4. 4.Walter Reed Army Medical CenterWashingtonUSA

Personalised recommendations