Advertisement

Numerical Simulation of Tungsten Melting Under Fusion Reactor-Relevant High-Power Pulsed Heating

  • Galina G. LazarevaEmail author
  • Aleksey S. Arakcheev
  • Aleksey A. Vasilyev
  • Anastasia G. Maksimova
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 133)

Abstract

Surface melting of tungsten under exposure to a pulsed electron beam was simulated numerically, the evaporation process taken into account. The calculation is based on the experimental time dependence of the total beam power. The model of the tungsten heating process is based on solving the two-phase Stefan problem. The position of the phase boundary depends on discontinuous nonlinear coefficients. The aim of the study is to provide a detailed resolution of the heat flow deep into the material with a fine spatial grid step. As compared with the size of the tungsten plate, the heating depth is very small. The problem statement under consideration is multiscale. Further expansion of the model involves gas dynamics equations to simulate the dynamics of the liquid and gaseous phases of the metal. Two approaches to solving the equation for temperature are considered: the implicit run method and the explicitly solvable Konovalov-Popov model. The results of calculations correlate with the experimental data obtained at the experimental stand Beam of Electrons for materials Test Applications (BETA) at Budker Institute of Nuclear Physics (BINP) of the SB RAS.

Keywords

Numerical simulation Pulsed heating Melting 

Notes

Acknowledgements

The problem statement the experimental data were supported by the Russian Science Foundation (project № 17-79-20203). Discrete models and computational algorithms were conducted within the framework of the budget project 0315-2016-0009 for ICMMG of the SB RAS.

References

  1. 1.
    Vyacheslavov, L., Arakcheev, A., Burdakov, A., Kandaurov, I., Kasatov, A., Kurkuchekov, V., Mekler, K., Popov, V., Shoshin, A., Skovorodin, D., Trunev, Y., Vasilyev, A.: Novel electron beam based test facility for observation of dynamics of tungsten erosion under intense ELM-like heat loads. AIP Conf. Proc. 1771, 060004 (2016)CrossRefGoogle Scholar
  2. 2.
    Konovalov, A.N., Popov, YuP: Explicitly solvable optimal discrete models with controlled disbalance of the total mechanical energy for dynamical problems of linear elasticity. Siberian Math. J. 56(5), 872–878 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Apushkinskaya, D.: Free Boundary Problems: Regularity Properties Near the Fixed Boundary. LNM, vol. 2218. Springer (2018)Google Scholar
  4. 4.
    Caffarelli, L.A.: The smoothness of the free boundaries in higher dimensions. Acta Math. 139(3–4), 155–184 (1977)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Meirmanov, A.M.: The Stefan Problem. Nauka, Novosibirsk (1986)Google Scholar
  6. 6.
    Vynnycky, M., Mitchell, S.L.: On the numerical solution of a Stefan problem with finite extinction time. J. Comput. Appl. Math. 276, 98–109 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Mitchell, S.L., Vynnycky, M.: On the numerical solution of two-phase Stefan problems with heat-flux boundary conditions. J. Comput. Appl. Math. 264, 49–64 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cialkowski, M.J., Grysa, K.: Trefftz method in solving the inverse problems. J. Inv. Ill-Posed Prob. 18, 595–616 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Lukyanenko, D.V., Shishlenin, M.A., Volkov, V.T.: Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time data. Commun. Nonlinear Sci. Numer. Simul. 54, 1339–1351 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kabanikhin, S.I., Shishlenin, M.A.: Recovering a time-dependent diffusion coefficient from nonlocal data. Numer. Anal. Appl. 11(1,) 38–44 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kanel, G.I., Zaretsky, E.B., Razorenov, S.V., Ashitkov, S.I., Fortov, V.E.: Unusual plasticity and strength of metals at ultra-short load durations. Phys. Usp. 60, 490–508 (2017)CrossRefGoogle Scholar
  12. 12.
    Pikuz, S.A. (Jr.), Faenov, A.Y., Skobelev, I.Y., Fortov, V.E.: Production of exotic states of matter with the use of X-rays generated by focusing a petawatt laser pulse onto a solid target. Phys. Usp. 57, 702–707 (2014)Google Scholar
  13. 13.
    Anisimov, S.I., Prokhorov, A.M., Fortov, V.E.: Application of high-power lasers to study matter at ultrahigh pressures. Sov. Phys. Usp. 27, 181–205 (1984)CrossRefGoogle Scholar
  14. 14.
    Trunev, YuA, Arakcheev, A.S., Burdakov, A.V., Kandaurov, I.V., Kasatov, A.A., Kurkuchekov, V.V., Mekler, K.I., Popov, V.A., Shoshin, A.A., Skovorodin, D.I., Vasilyev, A.A., Vyacheslavov, L.N.: Heating of tungsten target by intense pulse electron beam. AIP Conf. Proc. 1771, 060016 (2016)CrossRefGoogle Scholar
  15. 15.
    Taluts, S.G.: Experimental study of the thermophysical properties of transition metals and alloys based on iron at high temperatures: abstract. dis. d-RA Fiz.-Mat. Sciences: 01.04.14. Publ. house UGGA, Yekaterinburg (2001). (in Russian)Google Scholar
  16. 16.
    Davis, J.W., Smith, P.D.: ITER material properties handbook. J. Nucl. Mater. 233, 1593–1596 (1996)CrossRefGoogle Scholar
  17. 17.
    Ho, C.Y., Powell, R.W., Liley, P.E.: Thermal conductivity of elements. J. Phys. Chem. Ref. Data 1, 279 (1972)CrossRefGoogle Scholar
  18. 18.
    Pottlacher, G.: Thermal conductivity of pulse-heated liquid metals at melting and in the liquid phase. J. Non-Cryst. Solids 250, 177–181 (1999)CrossRefGoogle Scholar
  19. 19.
    Popov, V.A., Arakcheev, A.S., Burdakov, A.V., Kasatov, A.A., Vasilyev, A.A., Vyacheslavov, L.N.: Theoretical modeling of shielding for plasma flow and electron beam heating. AIP Conf. Proc. 1771, 060009 (2016)CrossRefGoogle Scholar
  20. 20.
    Samarskii, A.A., Vabishchevich, P.N.: Computational Heat Transfer, p. 784. Editorial URSS, Moscow (2003). (in Russian)Google Scholar
  21. 21.
    Yanenko, N.N.: Method of Fractional Steps for Solving Multidimensional Problems of Mathematical Physics, p. 196. Science. Sib. Deposition, Novosibirsk (1967) (in Russian)Google Scholar
  22. 22.
    Maksimova, A.G., Lazareva, G.G., Arakcheev, A.S.: Computer Calculation of Heating of Various Geometry of Cracks Formed under Pulsed Heat Load. Bulletin of CC: Computer Science, vol. 41. NCC Publisher, Novosibirsk (2018)Google Scholar
  23. 23.
    Muratov, M.V., Petrov, I.B., Levant, V.B.: Development of mathematical models of cracks for numerical solution of seismic problems with the use of grid-characteristic method. Comput. Res. Model. 8(6), 911–925 (2016). (in Russian)Google Scholar
  24. 24.
    Galanin, M.P., Proshunin, N.N., Rodin, A.S., Sorokin, D.L.: The Solution of three-dimensional unsteady heat conduction equation by finite element method taking into account phase transitions, No. 66, p. 27 . Preprint IPM im. M. V. Keldysh, (2016). (in Russian)Google Scholar
  25. 25.
    Konovalov, A.N.: Numerical methods for the dynamical problems of elasticity. Siberian Math. J. 38(3), 471–487 (1997)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Soldatkina, E.I., Arakcheev, A.S., Bagryansky, P.A.: Experiments in support of the gas dynamic trap based facility for plasma–material interaction testing. Fusion Eng. Des. 88(11), 3084–3090 (2013)CrossRefGoogle Scholar
  27. 27.
    Arakcheev, A.S., Apushkinskaya, D.E., Kandaurov, I.V., Kasatov, A.A., Kurkuchekov, V.V., Lazareva, G.G., Maksimova, A.G., Popov, V.A., Snytnikov, A.V., Trunev, YuA, Vasilyev, A.A., Vyacheslavov, L.N.: Two-dimensional numerical simulation of tungsten melting under pulsed electron beam. Fusion Eng. Des. 132, 13–17 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Galina G. Lazareva
    • 1
    • 2
    • 3
    Email author
  • Aleksey S. Arakcheev
    • 1
    • 2
    • 4
  • Aleksey A. Vasilyev
    • 1
    • 4
  • Anastasia G. Maksimova
    • 1
    • 3
    • 4
  1. 1.Novosibirsk State UniversityNovosibirskRussian Federation
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussian Federation
  3. 3.Institute of Computational Mathematics and Mathematical Geophysics of the SB RASAkademgorodokRussian Federation
  4. 4.Budker Institute of Nuclear Physics of the SB RASAkademgorodokRussian Federation

Personalised recommendations