Advertisement

Application to Synchronization of Dynamical Networks

  • Xinzhi Liu
  • Kexue Zhang
Chapter
Part of the IFSR International Series in Systems Science and Systems Engineering book series (IFSR, volume 33)

Abstract

Complex dynamical networks consist of a large set of interconnected nodes with each node being a fundamental unit with detailed contents. A great number of natural and man-made complex networks such as social networks, food networks, neural networks, the World Wide Web, computer networks, electrical power grid and so on, can be effectively modelled by complex dynamical networks. Synchronization of a group of dynamical nodes in a complex network topology is one of the most interesting and significant phenomenon in complex dynamical networks. In this section, we shall discuss impulsive synchronization of the discrete delay networks. By employing the impulsive control method and the Razumikhin-type results obtained in previous chapter, two criteria for exponential synchronization will be derived.

References

  1. 8.
    M.S. Baptista, F.M. Kakmeni, G. Del Magno, M.S. Hussein, How complex a dynamical network can be? Phys. Lett. A 375(10), 1309–1318 (2011)CrossRefGoogle Scholar
  2. 11.
    I.A. Basheer, M. Hajmeer, Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods 43(1), 3–31 (2000)CrossRefGoogle Scholar
  3. 17.
    F. Bullo, J. Cortés, S. Mantínez, Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms (Princeton University Press, Princeton, 2009)CrossRefGoogle Scholar
  4. 27.
    P. DeLellis, M. di Bernardo, T.E. Gorochowski, G. Russo, Synchronization and control of complex networks via contraction, adaptation and evolution. IEEE Circuits Syst. Mag. 10(3), 64–82 (2010)CrossRefGoogle Scholar
  5. 54.
    A. Khadra, X. Liu, X. Shen, Analyzing the robustness of impulsive synchronization coupled by linear delayed impulses. IEEE Trans. Autom. Control 4(4), 923–928 (2009)MathSciNetCrossRefGoogle Scholar
  6. 61.
    M. Lei, B. Liu, Robust impulsive synchronisation of discrete dynamical networks. Adv. Differ. Equ. article id 184275, 17 (2008)zbMATHGoogle Scholar
  7. 71.
    B. Liu, X. Liu, G. Chen, Robust impulsive synchronization of uncertain dynamical networks. IEEE Trans. Circuits Syst. I: Regul. Pap. 52(7), 1431–1441 (2005)MathSciNetCrossRefGoogle Scholar
  8. 73.
    B. Liu, H.J. Marquez, Uniform stability of discrete delay systems and synchronisation of discrete delay dynamical networks via Razumikhin technique. IEEE Trans. Circuits Syst. I: Regul. Pap. 55(9), 2795–2805 (2008)MathSciNetCrossRefGoogle Scholar
  9. 82.
    X. Liu, K. Zhang, W.C. Xie, Synchronization of linear dynamical networks on time scales: pinning control via delayed impulses. Automatica 72, 147–152 (2016)MathSciNetCrossRefGoogle Scholar
  10. 85.
    X. Liu, K. Zhang, W.C. Xie, Pinning impulsive synchronization of reaction-diffusion neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 28(5), 1055–1067 (2017)CrossRefGoogle Scholar
  11. 91.
    Y. Long, M. Wu, B. Liu, Robust impulsive synchronization of linear discrete dynamical networks. J. Control Theory Appl. 3(1), 20–26 (2005)MathSciNetCrossRefGoogle Scholar
  12. 93.
    J. Lu, D. Ho, J. Cao, A unified synchronization criterion for impulsive dynamic networks. Automatica 46(7), 1215–1221 (2010)MathSciNetCrossRefGoogle Scholar
  13. 112.
    G.A. Pagani, M. Aiello, The power grid as a complex network: a survey. Phys. A Stat. Mech. Appl. 392(11), 2688–2700 (2013)MathSciNetCrossRefGoogle Scholar
  14. 124.
    S. Strogatz, Exploring complex networks. Nature 410(6825), 268–276 (2001)CrossRefGoogle Scholar
  15. 139.
    X. Wang, G. Chen, Complex networks: small-world, scale free and beyond. IEEE Circuits Syst. Mag. 3(1), 6–20 (2003)CrossRefGoogle Scholar
  16. 163.
    Q. Zhang, J. Lu, J. Zhao, Impulsive synchronization of general continuous and discrete-time complex dynamical networks. Commun. Nonlinear Sci. Numer. Simul. 15(4), 1063–1070 (2010)MathSciNetCrossRefGoogle Scholar
  17. 170.
    J. Zhou, J. Lu, J. Lü, Adaptive synchronization of uncertain dynamical network. IEEE Trans. Autom. Control 51(4), 652–656 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Xinzhi Liu
    • 1
  • Kexue Zhang
    • 1
  1. 1.Department of Applied MathematicsUniversity of WaterlooWaterlooCanada

Personalised recommendations