The Influence of Phosphorus Dopant on the Structural and Mechanical Properties of Silicon

  • Shadia IkhmayiesEmail author
  • Yasemin Ö. Çiftci
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Phosphorus (P) is widely used as n-type dopant for silicon (Si) to form the emitter layer in wafer-based silicon solar cells. The main purpose of this work is to investigate the influence of P doping on the structural and mechanical properties of silicon. CASTEP program, which uses the density functional theory (DFT), with a plane-wave basis, is used to study the structural, electronic, and mechanical properties of undoped and P-doped Si (Si1−xPx for 0.0001 ≤ x ≤ 0.05). The density of states (DOS), band structure, elastic constants, bulk modulus \( \left( B \right) \), Young’s modulus (E), Shear modulus \( \left( G \right) \), and Poisson’s ratio (v) were all calculated. It is found that brittleness of Si increased by P doping.


Silicon Doping Phosphorus Solar cells CASTEP 


  1. 1.
    Pfrommer BG, Cộté M, Louie SG, Cohen ML (1997) Ab initio study of silicon in the R8 phase. Phys Rev B 56(15):6662–6668CrossRefGoogle Scholar
  2. 2.
    Bernstein N, Mehl MJ, Papaconstantopoulos DA (2000-I) Energetic, vibrational, and electronic properties of silicon using a nonorthogonal tight-binding model. Phys Rev B 62(7):4477–4487CrossRefGoogle Scholar
  3. 3.
    Güler E, Güler M (2013) Geometry optimization calculations for the elasticity of gold at high pressure. Adv Mater Sci Eng 2013:525673CrossRefGoogle Scholar
  4. 4.
    Pi Xiaodong (2012) Doping silicon nanocrystals with boron and phosphorus. J Nanomater 2012:912903CrossRefGoogle Scholar
  5. 5.
    Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Mater. 14:2717–2744CrossRefGoogle Scholar
  6. 6.
    Zhu W, Xiao H (2008) Ab initio study of electronic structure and optical properties of heavy-metal azides: TlN3, AgN3, and CuN3. J Comput Chem 29:176–184CrossRefGoogle Scholar
  7. 7.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRefGoogle Scholar
  8. 8.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687CrossRefGoogle Scholar
  9. 9.
    Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41(11):7892–7895CrossRefGoogle Scholar
  10. 10.
    Bellaiche L, Vanderbilt D (2000) Virtual crystal approximation revisited: application to dielectric and piezoelectric properties of perovskites. Phys Rev B 61(12):7877–7882CrossRefGoogle Scholar
  11. 11.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192CrossRefGoogle Scholar
  12. 12.
    Wortman JJ, Evans RA (1965) Youngs’ modulus, shear modulus and Poisson’s ratio in silicon and germanium. J Appl Phys 36:153–156CrossRefGoogle Scholar
  13. 13.
    Staroverov VN, Scuseria GE, Tao J, Perdew JP (2004) Tests of a ladder of density functionals for bulk solids and surfaces. Phys Rev B 69:075102CrossRefGoogle Scholar
  14. 14.
    Kittel C (1996) Introduction to solid state physics, 7th edn. Wiley, New YorkGoogle Scholar
  15. 15.
    Haas Philipp, Tran Fabien, Blaha Peter (2009) Calculation of the lattice constant of solids with semilocal functionals. Phys Rev B 79:085104CrossRefGoogle Scholar
  16. 16.
    Pugh SF (1954) XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag 45:823–843CrossRefGoogle Scholar
  17. 17.
    Hébert C, Luitz J, Schattschneider P (2003) Improvement of energy loss near edge structure calculation using Wien2k. Micron 34:219–225CrossRefGoogle Scholar
  18. 18.
    Hybertsen MS, Louie SG (1986) Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys Rev B 34:5390–5413CrossRefGoogle Scholar
  19. 19.
    Prikhodko M, Miao MS, Lambrecht WRL (2002) Pressure dependence of sound velocities in 3C-SiC and their relation to the high-pressure phase transition. Phys Rev B 66:125201CrossRefGoogle Scholar
  20. 20.
    Güler E, Güler M (2015) Elastic and mechanical properties of cubic diamond under pressure. Chin J Phys 53(2):040807Google Scholar
  21. 21.
    Schall JD, Gao G, Harrison JA (2008) Elastic constants of silicon materials calculated as a function of temperature using a parametrization of the second-generation reactive empirical bond-order potential. Phys Rev B 77:115209CrossRefGoogle Scholar
  22. 22.
    Mayer B, Anton H, Bott E, Methfessel M, Sticht J, Harris J, Schmidt PC (2003) Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases. Internet 11:23–32Google Scholar
  23. 23.
    Evecen M, Ciftci YO (2017) First-principles study on the structural, elastic, electronic and vibrational properties of scandium based intermetallic compounds (ScX, X = Co, Rh and Ir) under pressure. J Nanoelectron Optoelectron 12:100–108CrossRefGoogle Scholar
  24. 24.
    Güler E, Güler M (2014) Phase transition and elasticity of gallium arsenide under pressure. Mater Res Ibero Am J 17(5):1268–1272Google Scholar
  25. 25.
    Bensalem S, Chegaar M, Maouche D, Bouhemadou A (2014) Theoretical study of structural, elastic and thermodynamic properties of CZTX (X = S and Se) alloys. J Alloy Compd 589:137–142CrossRefGoogle Scholar
  26. 26.
    Fatima B, Chouhan SS, Acharya N, Sanyal SP (2014) Theoretical prediction of the electronic structure, bonding behavior and elastic moduli of scandium intermetallics. Internet 53:129–139Google Scholar
  27. 27.
    Güler M, Güler E (2013) Embedded atom method-based geometry optimization aspects of body-centered cubic metals. Chin Phys Lett 30(5):056201CrossRefGoogle Scholar
  28. 28.
    Guo Y, Wang Q, Kawazoe Y, Jena P (2015) A New silicon phase with direct band gap and novel optoelectronic properties. Sci Rep 5:14342CrossRefGoogle Scholar
  29. 29.
    Anderson HL (ed) (1989) A Physicist’s desk reference, The second edition of physics Vade Mecum. American Institute of Physics, New YorkGoogle Scholar
  30. 30.
    George A (1997) Elastic constants and moduli of diamond cubic Si. In: Hull R (ed). Properties of crystalline silicon 20, EMIS Data reviews, INSPEC, IEE, London, pp 98–103Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Al Isra University, Faculty of Science, Physics DepartmentAmmanJordan
  2. 2.Gazi University, Department of PhysicsAnkaraTurkey

Personalised recommendations