Characteristics of the Warming Trend During Winter Wheat Growing Seasons in Jiangsu Province of China

  • Xiangying Xu
  • Xinkai Zhu
  • Wenshan GuoEmail author
  • Chunyan Li
  • Jinfeng Ding
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 546)


Global warming has great influences on crop yields. However, several researchers have concluded that global warming has taken a “hiatus” in recent years. Here, we hope to identify the temperature trends of the winter wheat growing seasons and quantitatively estimate the effects of temperature variations on wheat yields. We carry out trend analysis on daily maximum (Tmax) and minimum temperatures (Tmin) from 1980 to 2014 in Jiangsu Province of China. The results indicate there are increasing trends for both Tmax and Tmin during 35 years, but no significant trends in the years after 2000. In addition, the increasing rates of the Tmin are larger than those of Tmax over the 35 years within all stations and all growing stages, which suggests that winter wheat is exposed to asymmetrical warming. The results of correlation analysis and regression analysis reveal that increases in Tmin have significant adverse effects on wheat yields.


Winter wheat Yield Asymmetric warming 



This work was supported by the National Key Research and Development Program of China (2016YFD0300107) and the Specialized Research Fund for the Doctoral Program of Higher Education (doctoral supervisor) (NO: 20133250110001). It was also supported by the National Natural Science Foundation of China (NO: 31401317).


  1. 1.
    Karl, T.R., Kuk, G., et al.: Global warming: evidence for asymmetric diurnal temperature change. Geophys. Res. Lett. 18(12), 2253–2256 (1991)CrossRefGoogle Scholar
  2. 2.
    Karl, T.R., Jones, P.D., Knight, R.W., et al.: A new perspective on recent global warming: Asymmetric trends of daily maximum and minimum temperature. Bull. Am. Meteor. Soc. 74(6), 1007–1023 (1993)CrossRefGoogle Scholar
  3. 3.
    Easterling, D.R., Horton, B., Jones, P.D., et al.: Maximum and minimum temperature trends for the globe. Science 277(18), 364–367 (1997)CrossRefGoogle Scholar
  4. 4.
    Peng, S., Piao, S., et al.: Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature 501, 88–95 (2013)CrossRefGoogle Scholar
  5. 5.
    Siddik, M.A.Z., Rahman, M.: Trend analysis of maximum, minimum, and average temperatures in Bangladesh: 1961–2008. Theor. Appl. Climatol 116(3–4), 721–730 (2014)CrossRefGoogle Scholar
  6. 6.
    Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., et al.: IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2013)Google Scholar
  7. 7.
    England, M.H., McGregor, S., et al.: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Chang. 4(3), 222–227 (2014)CrossRefGoogle Scholar
  8. 8.
    Kosaka, Y., Xie, S.-P.: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013). Scholar
  9. 9.
    Santer, B.D., et al.: Volcanic contribution to decadal changes in tropospheric temperature. Nat. Geosci. 7, 185–189 (2014). Scholar
  10. 10.
    Easterling, D.R., Wehner, M.F.: Is the climate warming or cooling? Geophys. Res. Lett. 36(8), 262–275 (2009)CrossRefGoogle Scholar
  11. 11.
    Cahill, N., Rahmstorf, S., Parnell, A.C.: Change points of global temperature. Environ. Res. Lett. 10(8), S309 (2015). Scholar
  12. 12.
    Karl, T.R., Arguez, A., Huang, B., et al.: Possible artifacts of data biases in the recent global surface warming hiatus. Science 348(6242), 1469 (2015)CrossRefGoogle Scholar
  13. 13.
    Gourdji, S.M., Sibley, A.M., Lobell, D.B.: Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ. Res. Lett. 8(2), 024041 (2013). Scholar
  14. 14.
    Deryng, D., Conway, D., et al.: Global crop yield response to extreme heat stress under multiple climate change futures. Environ. Res. Lett. 9(3), 2033–2053 (2014)CrossRefGoogle Scholar
  15. 15.
    Lobell, D.B., Tebaldi, C.: Getting caught with our plants down: the risks of a global crop yield slowdown from climate trends in the next two decades. Environ. Res. Lett. 9(7), 74003–74010 (2014)CrossRefGoogle Scholar
  16. 16.
    Zhao, H.: Physiological effects of post-anthesis high temperature and water stress on wheat quality formation. Nanjign Agricultural University (2006)Google Scholar
  17. 17.
    Li, K., Yang, X., et al.: The possible effects of global warming on cropping systems in china VIII—the effects of climate change on planting boundaries of different winter-spring varieties of winter wheat in China. Sci. Agric. Sin. 46(8), 1583–1594 (2013). Scholar
  18. 18.
    Asseng, S., et al.: Rising temperatures reduce global wheat production. Nat. Clim. Chang. 5, 143–147 (2014). Scholar
  19. 19.
    National Meteorological Information Center of China Meteorological Administration.
  20. 20.
    Main crop growth period database of the National Agricultural Scientific Data Sharing Center.
  21. 21.
    Cao, J., et al.: Mann-Kendall examination and application in the analysis of precipitation trend. Agric. Sci. Technol. Equip. 179(5) (2008).
  22. 22.
    Hamed, K.H., et al.: Trend detection in hydrologic data: the Mann-Kendall trend test under the scaling hypothesis. J. Hydrol. 349(3–4), 350–363 (2008)CrossRefGoogle Scholar
  23. 23.
    Santos, M., Fragoso, M.: Precipitation variability in Northern Portugal: data homogeneity assessment and trends in extreme precipitation indices. Atmos. Res. 131(5), 34–45 (2013)CrossRefGoogle Scholar
  24. 24.
    Potopová, V., Štěpánek, P., Možný, M., Türkott, L., Soukup, J.: Performance of the standardized precipitation evapotranspiration index at various lags for agricultural drought risk assessment in the Czech Republic. Agric. For. Meteorol. 202(202), 26–38 (2015)CrossRefGoogle Scholar
  25. 25.
    Zhou, X., Gao, Q., et al.: Long term temperature trends and spatial patterns of the interdecadal variations in Jiangsu. J. Nanjing Inst. Meteorol. 29(2), 196–202 (2006)MathSciNetGoogle Scholar
  26. 26.
    Peng, S., Huang, J., et al.: Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. U.S.A. 101(27), 9971 (2004)CrossRefGoogle Scholar
  27. 27.
    Zhang, R., Fang, Z.: Influence of different nighttime temperatures on the photosynthesis of the flag leaf and yield in wheat. Acta Agron. Sin. 20(6), 710–715 (1994). (in Chinese)Google Scholar
  28. 28.
    Zhang, M., Han, Z., et al.: Impact of nighttime warming on soil microbial biomass carbon/nitrogen and activity in main winter wheat cropping areas in China. Chin. J. Eco-Agric. 20(11), 1464–1470 (2012). (in Chinese)CrossRefGoogle Scholar
  29. 29.
    Fan, Y.: Effects of winter and spring night warming on grain yield formation in wheat and its phusiological mechanism. Nanjign Agricultural University (2015)Google Scholar
  30. 30.
    Hou, R., Zhu, O., et al.: Is the change of winter wheat yield under warming caused by shortened reproductive period? Ecol. Evol. 2(12), 2999–3008 (2012)CrossRefGoogle Scholar
  31. 31.
    Poudel, S., Shaw, R.: The relationships between climate variability and crop yield in a mountainous environment: a case study in Lamjung district. Nepal. Climate 4(1), 13 (2016). Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  • Xiangying Xu
    • 1
    • 2
  • Xinkai Zhu
    • 1
  • Wenshan Guo
    • 1
    Email author
  • Chunyan Li
    • 1
  • Jinfeng Ding
    • 1
  1. 1.Jiangsu Provincial Key Lab of Crop Genetics and Physiology/Wheat Research InstituteYangzhou UniversityYangzhouChina
  2. 2.Information and Engineering CollegeYangzhou UniversityYangzhouChina

Personalised recommendations