Advertisement

Galerkin Methods

  • Marcus Olavi RüterEmail author
Chapter
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 88)

Abstract

Having derived in the previous chapter various boundary value problems, including the finite and linearized hyperelasticity problems for both compressible and (nearly) incompressible materials, a reasonable question is how these problems can be solved. For most cases in engineering practice, the problems, including their geometry, are too complex for the feasible derivation of an exact analytical solution even though such a solution exists. We are therefore forced to employ numerical methods to obtain, at least, approximate solutions to the boundary value problems stated in the previous chapter.

References

  1. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. John Wiley & Sons, New York (2000)Google Scholar
  2. Aluru, N.R.: A point collocation method based on reproducing kernel approximations. Int. J. Numer. Meth. Engng. 47, 1083–1121 (2000)zbMATHCrossRefGoogle Scholar
  3. Arnold, D.N., Boffi, D., Falk, R.S.: Quadrilateral \({H}(\rm div)\) finite elements. SIAM J. Numer. Anal. 42, 2429–2451 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  4. Arnold, D.N., Brezzi, F., Douglas, J.: PEERS: A new mixed finite element for plane elasticity. Japan J. Appl. Math. 1, 347–367 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  5. Arnold, D.N., Falk, R.S.: A new mixed formulation for elasticity. Numer. Math. 53, 13–30 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  6. Arnold, D.N., Winther, R.: Mixed finite elements for elasticity. Numer. Math. 92, 401–419 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  7. Arroyo, M., Ortiz, M.: Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int. J. Numer. Meth. Engng. 65, 2167–2202 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  8. Auricchio, F., Beirão da Veiga, L., Brezzi, F., Lovadina, C.: Mixed finite element methods. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 1, 2, pp. 149–201. John Wiley & Sons, Chichester (2017)Google Scholar
  9. Babuška, I.: The finite element method with Lagrangian multipliers. Numer. Math. 20, 179–192 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  10. Babuška, I.: The finite element method with penalty. Math. Comp. 27, 221–228 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  11. Babuška, I., Banerjee, U., Osborn, J.E.: Survey of meshless and generalized finite element methods: A unified approach. Acta Numer. 1–125 (2003)Google Scholar
  12. Babuška, I., Melenk, J.M.: The partition of unity method. Int. J. Numer. Meth. Engng. 40, 727–758 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  13. Backus, G., Gilbert, F.: The resolving power of gross earth data. Geophys. J. R. astr. Soc. 16, 169–205 (1968)zbMATHCrossRefGoogle Scholar
  14. Bathe, K.-J.: Finite Element Procedures, 2nd edn. K.-J Bathe, Watertown (2014)zbMATHGoogle Scholar
  15. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Meth. Engng. 45, 601–620 (1999)zbMATHCrossRefGoogle Scholar
  16. Belytschko, T., Gracie, R.: On XFEM applications to dislocations and interfaces. Int. J. Plast. 23, 1721–1738 (2007)zbMATHCrossRefGoogle Scholar
  17. Belytschko, T., Krongauz, Y., Dolbow, J., Gerlach, C.: On the completeness of meshfree particle methods. Int. J. Numer. Meth. Engng. 43, 785–819 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  18. Belytschko, T., Krongauz, Y., Fleming, M., Organ, D., Liu, W.K.: Smoothing and accelerated computations in the element free Galerkin method. J. Comput. Appl. Math. 74, 111–126 (1996a)MathSciNetzbMATHCrossRefGoogle Scholar
  19. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods: An overview and recent developments. Comput. Methods Appl. Mech. Engrg. 139, 3–47 (1996b)zbMATHCrossRefGoogle Scholar
  20. Belytschko, T., Liu, W.K., Moran, B., Elkhodary, K.I.: Nonlinear Finite Elements for Continua and Structures, 2nd edn. John Wiley & Sons, Chichester (2014)zbMATHGoogle Scholar
  21. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Meth. Engng. 37, 229–256 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  22. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific, Belmont (1996)zbMATHGoogle Scholar
  23. Bochev, P.B., Gunzburger, M.D.: Least-Squares Finite Element Methods. Springer, New York (2009)zbMATHGoogle Scholar
  24. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Berlin (2013)zbMATHCrossRefGoogle Scholar
  25. Boiveau, T., Burman, E.: A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity. IMA J. Numer. Anal. 36, 770–795 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  26. Bonet, J., Kulasegaram, S.: Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. Int. J. Numer. Meth. Engng. 47, 1189–1214 (2000)zbMATHCrossRefGoogle Scholar
  27. Bos, L.P., Salkauskas, K.: Moving least-squares are Backus-Gilbert optimal. J. Approx. Theory 59, 267–275 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  28. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  29. Bracewell, R.N.: The Fourier Transform and its Applications, 3rd edn. McGraw-Hill, New York (1999)zbMATHGoogle Scholar
  30. Braess, D.: Finite Elements—Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd edn. Cambridge University Press, Cambridge (2007)Google Scholar
  31. Brenner, S.C., Carstensen, C.: Finite element methods. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 1, 2nd edn., pp. 101–147. John Wiley & Sons, Chichester (2017)Google Scholar
  32. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)zbMATHCrossRefGoogle Scholar
  33. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8, 129–151 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  34. Brezzi, F., Douglas Jr., J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  35. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)zbMATHCrossRefGoogle Scholar
  36. Burman, E.: A penalty free nonsymmetric Nitsche-type method for the weak imposition of boundary conditions. SIAM J. Numer. Anal. 50, 1959–1981 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  37. Chen, J.S., Belytschko, T.: Meshless and meshfree methods. In: Engquist, B. (ed.) Encyclopedia of Applied and Computational Mathematics, pp. 886–894. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  38. Chen, J.S., Han, W., You, Y., Meng, X.: A reproducing kernel method with nodal interpolation property. Int. J. Numer. Meth. Engng. 56, 935–960 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  39. Chen, J.S., Liu, W.K., Hillman, M.C., Chi, S.W., Lian, Y., Bessa, M.A.: Reproducing kernel particle method for solving partial differential equations. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 2, 2nd edn., pp. 691–734. John Wiley & Sons, Chichester (2017)Google Scholar
  40. Chen, J.S., Pan, C., Roque, C.M.O.L., Wang, H.P.: A Lagrangian reproducing kernel particle method for metal forming analysis. Comput. Mech. 22, 289–307 (1998)zbMATHCrossRefGoogle Scholar
  41. Chen, J.S., Pan, C., Wu, C.T., Liu, W.K.: Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures. Comput. Methods Appl. Mech. Engrg. 139, 195–227 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  42. Chen, J.S., Wang, H.P.: New boundary condition treatments in meshfree computation of contact problems. Comput. Methods Appl. Mech. Engrg. 187, 441–468 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  43. Chessa, J., Belytschko, T.: An extended finite element method for two-phase fluids. J. Appl. Mech. 70, 10–17 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  44. Chi, S.W., Chen, J.S., Hu, H.Y., Yang, J.P.: A gradient reproducing kernel collocation method for boundary value problems. Int. J. Numer. Meth. Engng. 93, 1381–1402 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  45. Christ, N.H., Friedberg, R., Lee, T.D.: Weights of links and plaquettes in a random lattice. Nucl. Phys. B 210, 337–346 (1982)MathSciNetCrossRefGoogle Scholar
  46. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam (1978)zbMATHGoogle Scholar
  47. Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Bull. Amer. Math. Soc. 49, 1–23 (1943)MathSciNetzbMATHCrossRefGoogle Scholar
  48. de Borst, R., Crisfield, M.A., Remmers, J.J.C., Verhoosel, C.V.: Non-linear Finite Element Analysis of Solids and Structures, 2nd edn. John Wiley & Sons, Chichester (2012)zbMATHCrossRefGoogle Scholar
  49. Duarte, C.A., Oden, J.T.: An \(h\)-\(p\) adaptive method using clouds. Comput. Methods Appl. Mech. Engrg. 139, 237–262 (1996a)MathSciNetzbMATHCrossRefGoogle Scholar
  50. Duarte, C.A., Oden, J.T.: \(H\)-\(p\) clouds—an \(h\)-\(p\) meshless method. Numer. Methods Partial Differential Eq. 12, 673–705 (1996b)MathSciNetzbMATHCrossRefGoogle Scholar
  51. Duchon, J.: Splines minimizing rotation-invariant semi-norms in Sobolev spaces. Constructive Theory of Functions of Several Variables. Lecture Notes in Mathematics, vol. 571, pp. 85–100. Springer, Berlin (1976)CrossRefGoogle Scholar
  52. Düster, A., Rank, E., Szabó, B.: The \(p\)-version of the finite element and finite cell methods. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 3, 2 edn., pp. 137–171. John Wiley & Sons, Chichester (2017)Google Scholar
  53. Fasshauer, G.E.: Approximate moving least-squares approximation with compactly supported radial weights. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations, pp. 105–116. Springer, Berlin (2003)CrossRefGoogle Scholar
  54. Fleming, M., Chu, Y.A., Moran, B., Belytschko, T.: Enriched element-free Galerkin methods for crack tip fields. Int. J. Numer. Meth. Engng. 40, 1483–1504 (1997)MathSciNetCrossRefGoogle Scholar
  55. Fletcher, R.: Practical Methods of Optimization, 2nd edn. John Wiley & Sons, Chichester (2000)zbMATHCrossRefGoogle Scholar
  56. Fredholm, I.: Sur une classe d’équations fonctionnelles. Acta Math. 27, 365–390 (1903)MathSciNetzbMATHCrossRefGoogle Scholar
  57. Fries, T.-P.: A corrected XFEM approximation without problems in blending elements. Int. J. Numer. Meth. Engng. 75, 503–532 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  58. Fries, T.-P., Belytschko, T.: The intrinsic XFEM: a method for arbitrary discontinuities without additional unknowns. Int. J. Numer. Meth. Engng. 68, 1358–1385 (2006)zbMATHCrossRefGoogle Scholar
  59. Fries, T.-P., Byfut, A., Alizada, A., Cheng, K.W., Schröder, A.: Hanging nodes and XFEM. Int. J. Numer. Meth. Engng. 86, 404–430 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  60. Galerkin, B.G.: Series solutions of some cases of equilibrium of elastic beams and plates (in Russian). Vestn. Inshenernov. 1, 897–908 (1915)Google Scholar
  61. Gaul, L.: From Newton’s principia via Lord Rayleigh’s theory of sound to finite elements. In: Stein, E. (ed.) The History of Theoretical, Material and Computational Mechanics—Mathematics meets Mechanics and Engineering, pp. 385–398. Springer, Berlin (2014)CrossRefGoogle Scholar
  62. Gerasimov, T., Rüter, M., Stein, E.: An explicit residual-type error estimator for \(\mathbb{Q}_1\)-quadrilateral extended finite element method in two-dimensional linear elastic fracture mechanics. Int. J. Numer. Meth. Engng. 90, 1118–1155 (2012)zbMATHCrossRefGoogle Scholar
  63. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1981)zbMATHGoogle Scholar
  64. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. astr. Soc. 181, 375–389 (1977)zbMATHCrossRefGoogle Scholar
  65. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1986)zbMATHCrossRefGoogle Scholar
  66. Griebel, M., Schweitzer, M.A.: A particle-partition of unity method, Part V: Boundary conditions. In: Hildebrandt, S., Karcher, H. (eds.) Geometric Analysis and Nonlinear Partial Differential Equations, pp. 519–542. Springer, Berlin (2003)CrossRefGoogle Scholar
  67. Griebel, M., Schweitzer, M.A. (eds.): Meshfree Methods for Partial Differential Equations I–VIII. Lecture Notes in Computational Science and Engineering. Springer, Berlin (2003–2017)Google Scholar
  68. Günther, F.C., Liu, W.K.: Implementation of boundary conditions for meshless methods. Comput. Methods Appl. Mech. Engrg. 163, 205–230 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  69. Han, W., Meng, X.: Error analysis of reproducing kernel particle method. Comput. Methods Appl. Mech. Engrg. 190, 6157–6181 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  70. Hansbo, A., Hansbo, P.: A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Engrg. 193, 3523–3540 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  71. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76, 1905–1915 (1971)CrossRefGoogle Scholar
  72. Hattori, G., Rojas-Díaz, R., Sáez, A., Sukumar, N., García-Sánchez, F.: New anisotropic crack-tip enrichment functions for the extended finite element method. Comput. Mech. 50, 591–601 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  73. Hegen, D.: Element-free Galerkin methods in combination with finite element approaches. Comput. Methods Appl. Mech. Engrg. 135, 143–166 (1996)zbMATHCrossRefGoogle Scholar
  74. Holl, M., Loehnert, S., Wriggers, P.: An adaptive multiscale method for crack propagation and crack coalescence. Int. J. Numer. Meth. Engng. 93, 23–51 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  75. Hu, H.Y., Chen, J.S., Hu, W.: Weighted radial basis collocation method for boundary value problems. Int. J. Numer. Meth. Engng. 69, 2736–2757 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  76. Hu, H.Y., Chen, J.S., Hu, W.: Error analysis of collocation method based on reproducing kernel approximation. Numer. Methods Partial Differential Eq. 27, 554–580 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  77. Huerta, A., Belytschko, T., Fernández-Méndez, S., Rabczuk, T., Zhuang, X., Arroyo, M.: Meshfree methods. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 2, 2 edn., pp. 653–690. John Wiley & Sons, Chichester (2017)Google Scholar
  78. Huerta, A., Fernández-Méndez, S.: Enrichment and coupling of the finite element and meshless methods. Int. J. Numer. Meth. Engng. 48, 1615–1636 (2000)zbMATHCrossRefGoogle Scholar
  79. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Englewood Cliffs (1987)zbMATHGoogle Scholar
  80. Irons, B.M., Zienkiewicz, O.C.: The isoparametric finite element system—a new concept in finite element analysis. In: Proceedings of Conference Recent Advances in Stress Analysis. Royal Aero Soc., London (1968)Google Scholar
  81. Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987)zbMATHGoogle Scholar
  82. Kaljević, I., Saigal, S.: An improved element free Galerkin formulation. Int. J. Numer. Meth. Engng. 40, 2953–2974 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  83. Kansa, E.J.: Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates. Comput. Math. Appl. 19, 127–145 (1990a)MathSciNetzbMATHCrossRefGoogle Scholar
  84. Kansa, E.J.: Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19, 147–161 (1990b)MathSciNetzbMATHCrossRefGoogle Scholar
  85. Krongauz, Y., Belytschko, T.: Enforcement of essential boundary conditions in meshless approximations using finite elements. Comput. Methods Appl. Mech. Engrg. 131, 133–145 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  86. Krysl, P., Belytschko, T.: Analysis of thin plates by the element-free Galerkin method. Comput. Mech. 17, 26–35 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  87. Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods. Math. Comp. 37, 141–158 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  88. Larson, M.G., Bengzon, F.: The Finite Element Method: Theory, Implementation, and Applications. Springer, Berlin (2013)zbMATHCrossRefGoogle Scholar
  89. Lee, C.K., Liu, X., Fan, S.C.: Local multiquadric approximation for solving boundary value problems. Comput. Mech. 30, 396–409 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  90. Levin, D.: The approximation power of moving least-squares. Math. Comp. 67, 1517–1531 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  91. Li, S., Liu, W.K.: Meshfree Particle Methods. Springer, Berlin (2004)zbMATHGoogle Scholar
  92. Liu, G.R.: Meshfree Methods—Moving Beyond the Finite Element Method, 2nd edn. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  93. Liu, W.K., Chen, Y., Jun, S., Chen, J.S., Belytschko, T., Pan, C., Uras, R.A., Chang, C.T.: Overview and applications of the reproducing Kernel Particle methods. Arch. Comput. Methods Eng. 3, 3–80 (1996)MathSciNetCrossRefGoogle Scholar
  94. Liu, W.K., Jun, S., Li, S., Adee, J., Belytschko, T.: Reproducing kernel particle methods for structural dynamics. Int. J. Numer. Meth. Engng. 38, 1655–1679 (1995a)MathSciNetzbMATHCrossRefGoogle Scholar
  95. Liu, W.K., Jun, S., Zhang, Y.F.: Reproducing kernel particle methods. Int. J. Numer. Meth. Fluids 20, 1081–1106 (1995b)MathSciNetzbMATHCrossRefGoogle Scholar
  96. Lu, Y.Y., Belytschko, T., Gu, L.: A new implementation of the element free Galerkin method. Comput. Methods Appl. Mech. Engrg. 113, 397–414 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  97. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)CrossRefGoogle Scholar
  98. Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming, 4th edn. Springer, Cham (2016)zbMATHCrossRefGoogle Scholar
  99. McLain, D.H.: Drawing contours from arbitrary data points. Comput. J. 17, 318–324 (1974)CrossRefGoogle Scholar
  100. Melenk, J.M.: On approximation in meshless methods. In: Blowey, J.F., Craig, A.W. (eds.) Frontiers in Numerical Analysis, pp. 65–141. Springer, Berlin (2005)zbMATHCrossRefGoogle Scholar
  101. Melenk, J.M., Babuška, I.: The partition of unity finite element method: Basic theory and applications. Comput. Methods Appl. Mech. Engrg. 139, 289–314 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  102. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Engng. 46, 131–150 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  103. Moës, N., Dolbow, J. E., Sukumar, N.: Extended finite element methods. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 3, 2 edn., pp. 173–193. John Wiley & Sons, Chichester (2017)Google Scholar
  104. Nayroles, B., Touzot, G., Villon, P.: Generalizing the finite element method: Diffuse approximation and diffuse elements. Comput. Mech. 10, 307–318 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  105. Nedelec, J.C.: Mixed finite elements in \(\mathbb{R}^3\). Numer. Math. 35, 315–341 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  106. Nitsche, J.A.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Semin. Univ. Hambg. 36, 9–15 (1971)zbMATHCrossRefGoogle Scholar
  107. Oñate, E., Idelsohn, S., Zienkiewicz, O. C., Taylor, R. L.: A finite point method in computational mechanics. Application to convective transport and fluid flow. Int. J. Numer. Meth. Engng. 39, 3839–3866 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  108. Oñate, E., Perazzo, F., Miquel, J.: A finite point method for elasticity problems. Comput. & Struct. 79, 2151–2163 (2001)CrossRefGoogle Scholar
  109. Organ, D., Fleming, M., Terry, T., Belytschko, T.: Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Comput. Mech. 18, 225–235 (1996)zbMATHCrossRefGoogle Scholar
  110. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002)zbMATHGoogle Scholar
  111. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  112. Pan, V.Y.: How bad are Vandermonde matrices? SIAM J. Matrix Anal. & Appl. 37, 676–694 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  113. Rabczuk, T., Zi, G.: A meshfree method based on the local partition of unity for cohesive cracks. Comput. Mech. 39, 743–760 (2007)zbMATHCrossRefGoogle Scholar
  114. Randles, P.W., Libersky, L.D.: Smoothed particle hydrodynamics: Some recent improvements and applications. Comput. Methods Appl. Mech. Engrg. 139, 375–408 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  115. Raviart, P.-A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods (Proceedings of Conference, Consiglio Naz. delle Ricerche (C. N. R.), Rome, 1975), Lecture Notes in Mathematics, vol. 606, pp. 292–315. Springer, Berlin (1977)Google Scholar
  116. Ritz, W.: Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. J. Reine Angew. Math. 135, 1–61 (1909)MathSciNetzbMATHCrossRefGoogle Scholar
  117. Schröder, J., Schwarz, A., Steeger, K.: Least-squares mixed finite element formulations for isotropic and anisotropic elasticity at small and large strains. In: Schröder, J., Wriggers, P. (eds.) Advanced Finite Element Technologies, pp. 131–175. Springer, Berlin (2016)zbMATHCrossRefGoogle Scholar
  118. Schwab, C.: \(p\)- and \(hp\)-Finite Element Methods—Theory and Applications in Solid and Fluid Mechanics. Clarendon Press, Oxford (1998)Google Scholar
  119. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM National Conference, pp. 517–524 (1968)Google Scholar
  120. Sibson, R.: A vector identity for the Dirichlet tessellation. Math. Proc. Camb. Phil. Soc. 87, 151–155 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  121. Simone, A., Duarte, C.A., Van der Giessen, E.: A Generalized Finite Element Method for polycrystals with discontinuous grain boundaries. Int. J. Numer. Meth. Engng. 67, 1122–1145 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  122. Stein, E.: History of the finite element method–mathematics meets mechanics–part I: Engineering developments. In: Stein, E. (ed.) The History of Theoretical, Material and Computational Mechanics-Mathematics meets Mechanics and Engineering, pp. 399–442. Springer, Berlin (2014)zbMATHCrossRefGoogle Scholar
  123. Stein, E., Rolfes, R.: Mechanical conditions for stability and optimal convergence of mixed finite elements for linear plane elasticity. Comput. Methods Appl. Mech. Engrg. 84, 77–95 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  124. Stenberg, R.: A family of mixed finite elements for the elasticity problem. Numer. Math. 53, 513–538 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  125. Stenberg, R.: On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math. 63, 139–148 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  126. Strouboulis, T., Babuška, I., Copps, K.: The design and analysis of the Generalized Finite Element Method. Comput. Methods Appl. Mech. Engrg. 181, 43–69 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  127. Strouboulis, T., Copps, K., Babuška, I.: The generalized finite element method. Comput. Methods Appl. Mech. Engrg. 190, 4081–4193 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  128. Strutt, J.W. 3rd Baron Rayleigh.: The Theory of Sound, vol. 1. Macmillan and Co., London (1877)Google Scholar
  129. Sukumar, N.: Construction of polygonal interpolants: a maximum entropy approach. Int. J. Numer. Meth. Engng. 61, 2159–2181 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  130. Sukumar, N., Moran, B., Belytschko, T.: The natural element method in solid mechanics. Int. J. Numer. Meth. Engng. 43, 839–887 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  131. Szabó, B., Babuška, I.: Finite Element Analysis. John Wiley & Sons, New York (1991)zbMATHGoogle Scholar
  132. Turner, M.J., Clough, R.W., Martin, H.C., Topp, L.J.: Stiffness and deflection analysis of complex structures. J. Aero. Sci. 23, 805–823 (1956)zbMATHCrossRefGoogle Scholar
  133. Ventura, G., Xu, J.X., Belytschko, T.: A vector level set method and new discontinuity approximations for crack growth by EFG. Int. J. Numer. Meth. Engng. 54, 923–944 (2002)zbMATHCrossRefGoogle Scholar
  134. Wendland, H.: Meshless Galerkin methods using radial basis functions. Math. Comp. 68, 1521–1531 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  135. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)zbMATHGoogle Scholar
  136. Wriggers, P.: Nonlinear Finite Element Methods. Springer, Berlin (2008)zbMATHGoogle Scholar
  137. Zhu, T., Atluri, S.N.: A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Comput. Mech. 21, 211–222 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  138. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, 7th edn. Butterworth-Heinemann, Oxford (2013)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of CaliforniaLos AngelesUSA

Personalised recommendations