Advertisement

Robust Spectrum Sensing for Cognitive Radio with Impulsive Noise

  • Liping LuoEmail author
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 262)

Abstract

Spectrum sensing plays an important role in cognitive radio. In this paper, a robust spectrum sensing method via empirical characteristic function based on goodness-of-fit testing is proposed, named as ECF detector. The test statistic is derived from the empirical characteristic function of the observed samples, thus the secondary users do not require any prior knowledge of the primary signal and the noise distribution. Extensive simulations are performed and compared with the existing spectrum sensing methods, such as energy detector, eigenvalue-based detector, AD detector and KS detector. The results show that, the proposed ECF detector can offer superior detection performance under both the Gaussian noise and the impulsive noise environments.

Keywords

Cognitive radio Empirical characteristic function Goodness-of-fit testing Impulsive noise Spectrum sensing 

References

  1. 1.
    Urkowitz, H.: Energy detection of unknown deterministic signals. Proc. IEEE 55(4), 523–531 (1967)CrossRefGoogle Scholar
  2. 2.
    Digham, F., Alouini, M.-S., Simon, M.K.: On the energy detectionof unknown signals over fading channels. IEEE Trans. Commun. 55(1), 21–24 (2007)CrossRefGoogle Scholar
  3. 3.
    Zeng, Y., Liang, Y.-C.: Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Trans. Commun. 57(6), 1784–1793 (2009)CrossRefGoogle Scholar
  4. 4.
    Wang, Pu, Fang, Jun, Li, Hongbin: Multiantenna-assisted spectrum sensing for cognitive radio. IEEE Trans. Veh. Technol. 59(4), 1791–1800 (2010)CrossRefGoogle Scholar
  5. 5.
    Abbas, T., Masoumeh, N.-K.: Multiple antenna spectrum sensing in cognitive radios. IEEE Trans. Wirel. Commun. 9(2), 814–823 (2010)CrossRefGoogle Scholar
  6. 6.
    Althaf, C.I.M., Prema, S.: Covariance and eigenvalue based spectrum sensing using USRP in real environment. In: 10th International Conference on Communications Systems and Networks, pp. 414–417. Bangalore, India (2018)Google Scholar
  7. 7.
    Skomal, E.N.: The range and frequency dependence of VHF-UHF man-made radio noise in and above metropolitan areas. IEEE Trans. Veh. Technol. 19(2), 213–221 (1970)CrossRefGoogle Scholar
  8. 8.
    Blackard, K.L., Rappaport, T.S., Bostian, C.W.: Measurements and models of radio frequency impulsive noise for indoor wireless communication. IEEE J. Sel. Areas Commun. 11(7), 991–1001 (1993)CrossRefGoogle Scholar
  9. 9.
    Kuran, M.S., Tugcu, T.: A survey on emerging broadband wireless access technologies. Comput. Netw. 51(1), 3013–3046 (2007)CrossRefGoogle Scholar
  10. 10.
    Wang, H., Yang, E., Zhao, Z., Zhang, W.: Spectrum sensing in cognitive radio using goodness of fit testing. IEEE Trans. Wirel. Commun. 8(11), 5427–5430 (2009)CrossRefGoogle Scholar
  11. 11.
    Sheers, B., Teguig, D., Le Nir, V.: Modified Anderson-Darling detector for spectrum sensing. Electron. Lett. 15(25), 2156–2158 (2015)CrossRefGoogle Scholar
  12. 12.
    Zhang, G., Wang, X., Liang, Y.-C., Liu, J.: Fast and robust spectrum sensing via Kolmogorov-Smirnov test. IEEE Trans. Commun. 58(12), 3410–3416 (2010)CrossRefGoogle Scholar
  13. 13.
    Arshad, K., Moessner, K.: Robust spectrum sensing based on statistical tests. IET Commun. 7(9), 808–817 (2013)CrossRefGoogle Scholar
  14. 14.
    Lekomtcev, D., Marsalek, R.: Spectrum sensing under transmitter front-end constraints. In: 23rd International Conference on Systems, Signals and Image Processing, pp. 1–4. Bratislava, Slovakia (2016)Google Scholar
  15. 15.
    Shao, M., Nikias, C.: Signal processing with fractional lower order moments: stable processes and their applications. Proc. IEEE 81(7), 986–1010 (1993)CrossRefGoogle Scholar
  16. 16.
    Nikias, C., Shao, M.: Sibgnal Processing with Alpha-stable Distributions and Applications. Wiley, New York (1995)Google Scholar
  17. 17.
    Rajan, A., Tepedelenlioglu, C.: Diversity combining over Rayleigh fading channels with symmetric alpha-stable noise. IEEE Trans. Wirel. Commun. 9(9), 2968–2976 (2010)CrossRefGoogle Scholar
  18. 18.
    Brcich, R.F., Iskander, D.R., Zoubir, A.M.: The stability test for symmetric alpha-stable distributions. IEEE Trans. Signal Process. 53(3), 977–986 (2005)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Andersen, H.H, Hoejbjerre, M., Soerensen, D., et al.: Linear and Graphical Models: For the Multivariate Complex Normal Distribution. Springer, New York (1995)CrossRefGoogle Scholar
  20. 20.
    Fan, Y.: Goodness-of-fit tests for a multivariate distribution by the empirical characteristic function. J. Multivar. Anal. 62, 36–63 (1997)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Press, S.J.: Estimation in univariate and multivariate stable distributions. J. Am. Stat. Assoc. 67(340), 842–846 (1972)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Koutrouvelis, I.A.: Regression-type estimation of the parameters of stable laws. J. Am. Stat. Assoc. 75(372), 918–928 (1980)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Feuerverger, A., Mcdunnough, P.: On the efficiency of empirical characteristic function procedures. J. R. Stat. Soc. 43(1), 20–27 (1981)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Tsihrintzis, G., Nikias, C.: Performance of optimum and suboptimum receivers in the presence of impulsive noise modeled as an alpha-stable process. IEEE Trans. Commun. 43(4), 904–914 (1995)CrossRefGoogle Scholar
  25. 25.
    Koutrouvelis, I.A.: A goodness-of-fit test of simple hypotheses based on the empirical characteristic function. Biometrika 67(1), 238–240 (1980)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ilow, J., Hatzinakos, D.: Applications of the empirical characteristic function to estimation and detection problems. Elsevier Signal Process. 65(2), 199–219 (1998)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  1. 1.College of Information Science and EngineeringGuangxi University for NationalitiesNanningChina

Personalised recommendations