Advertisement

Use of Sentiment Analysis Techniques in Healthcare Domain

  • Francisco Javier Ramírez-TinocoEmail author
  • Giner Alor-Hernández
  • José Luis Sánchez-Cervantes
  • María del Pilar Salas-Zárate
  • Rafael Valencia-García
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 815)

Abstract

Every day a large amount of subjective information is generated through social networks such as Facebook® and Twitter®. The subjective information implies the opinions, beliefs, feelings and attitudes that people express towards different topics of interest. Moreover, this type of information is of great importance for companies, organizations or individuals, because it allows them to carry out actions that benefit them. Besides, sentiment analysis is the field that studies subjective information through natural language processing, computational linguistics, information retrieval and data mining techniques. Sentiment analysis is very useful in various domains, such as politics, marketing, tourism, among others. Actually, healthcare domain implies a large area of opportunity to obtain benefits using sentiment analysis, such as obtaining information about the patients’ mood, diseases, adverse drug reactions, epidemics, among others. However, healthcare domain has been very little explored. Therefore, in this chapter we propose a module based on sentiment analysis to obtain sentiments and emotions at the comment and entity levels from texts related to the healthcare domain. Also, different case studies are presented to validate the proposed module.

Notes

Acknowledgements

The authors are grateful to the National Technological Institute of Mexico for supporting this work. This research paper was also supported by the Mexico’s National Council of Science and Technology (CONACYT), as well as by the Secretariat of Public Education (SEP) through the PRODEP program.

References

  1. 1.
    Ravi, K., Ravi, V.: A survey on opinion mining and sentiment analysis: Tasks, approaches and applications. Knowl. Syst. 89, 14–46 (2015).  https://doi.org/10.1016/j.knosys.2015.06.015CrossRefGoogle Scholar
  2. 2.
    Serrano-Guerrero, J., Olivas, J.A., Romero, F.P., Herrera-Viedma, E.: Sentiment analysis: a review and comparative analysis of web services. Inf. Sci. (Ny) 311, 18–38 (2015).  https://doi.org/10.1016/j.ins.2015.03.040CrossRefGoogle Scholar
  3. 3.
    Medhat, W., Hassan, A., Korashy, H.: Sentiment analysis algorithms and applications: a survey. Ain Shams Eng. J. 5, 1093–1113 (2014).  https://doi.org/10.1016/j.asej.2014.04.011CrossRefGoogle Scholar
  4. 4.
    Fernández-Gavilanes, M., Álvarez-López, T., Juncal-Martínez, J., Costa-Montenegro, E., Javier González-Castaño, F.: Unsupervised method for sentiment analysis in online texts. Expert Syst. Appl. 58, 57–75 (2016).  https://doi.org/10.1016/j.eswa.2016.03.031CrossRefGoogle Scholar
  5. 5.
    Bucur, C.: Using opinion mining techniques in tourism. Proc. Econ. Financ. 23, 1666–1673 (2015).  https://doi.org/10.1016/S2212-5671(15)00471-2CrossRefGoogle Scholar
  6. 6.
    Gull, R., Shoaib, U., Rasheed, S., Abid, W., Zahoor, B.: Pre processing of twitter’s data for opinion mining in political context. Proc. Comput. Sci. 96, 1560–1570 (2016).  https://doi.org/10.1016/j.procs.2016.08.203CrossRefGoogle Scholar
  7. 7.
    Crannell, W.C., Clark, E., Jones, C., James, T.A., Moore, J.: A pattern-matched twitter analysis of US cancer-patient sentiments. J. Surg. Res. 206, 536–542 (2018).  https://doi.org/10.1016/j.jss.2016.06.050CrossRefGoogle Scholar
  8. 8.
    Rodrigues, R.G., das Dores, R.M., Camilo-Junior, C.G., Rosa, T.C.: SentiHealth-Cancer: a sentiment analysis tool to help detecting mood of patients in online social networks. Int. J. Med. Inform. 85, 80–95 (2016).  https://doi.org/10.1016/j.ijmedinf.2015.09.007CrossRefGoogle Scholar
  9. 9.
    Bui, N., Yen, J., Honavar, V.: Temporal causality analysis of sentiment change in a cancer survivor network. IEEE Trans. Comput. Soc. Syst. 3, 75–87 (2016).  https://doi.org/10.1109/TCSS.2016.2591880CrossRefGoogle Scholar
  10. 10.
    Korkontzelos, I., Nikfarjam, A., Shardlow, M., Sarker, A., Ananiadou, S., Gonzalez, G.H.: Analysis of the effect of sentiment analysis on extracting adverse drug reactions from tweets and forum posts. J. Biomed. Inform. 62, 148–158 (2016).  https://doi.org/10.1016/j.jbi.2016.06.007CrossRefGoogle Scholar
  11. 11.
    Wu, L., Moh, T.S., Khuri, N.: Twitter opinion mining for adverse drug reactions. In: 2015 IEEE International Conference on Big Data (Big Data), pp. 1570–1574 (2015)Google Scholar
  12. 12.
    Gopalakrishnan, V., Ramaswamy, C.: Patient opinion mining to analyze drugs satisfaction using supervised learning. J. Appl. Res. Technol. 15, 311–319 (2017).  https://doi.org/10.1016/j.jart.2017.02.005CrossRefGoogle Scholar
  13. 13.
    Asghar, M.Z., Ahmad, S., Qasim, M., Zahra, S.R., Kundi, F.M.: SentiHealth: creating health-related sentiment lexicon using hybrid approach. Springerplus 5, 1139 (2016).  https://doi.org/10.1186/s40064-016-2809-xCrossRefGoogle Scholar
  14. 14.
    Du, J., Xu, J., Song, H.-Y., Tao, C.: Leveraging machine learning-based approaches to assess human papillomavirus vaccination sentiment trends with Twitter data. BMC Med. Inform. Decis. Mak. 17, 69 (2017).  https://doi.org/10.1186/s12911-017-0469-6CrossRefGoogle Scholar
  15. 15.
    Zhou, X., Coiera, E.W., Tsafnat, G., Arachi, D., Ong, M.-S., Dunn, A.G.: Using social connection information to improve opinion mining: identifying negative sentiment about HPV vaccines on twitter. Stud. Health Technol. Inform. 216, 761–765 (2015)Google Scholar
  16. 16.
    Birjali, M., Beni-Hssane, A., Erritali, M.: Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Proc. Comput. Sci. 113, 65–72 (2017).  https://doi.org/10.1016/j.procs.2017.08.290CrossRefGoogle Scholar
  17. 17.
    Sabra, S., Malik, K.M., Alobaidi, M.: Prediction of venous thromboembolism using semantic and sentiment analyses of clinical narratives. Comput. Biol. Med. 94, 1–10 (2018).  https://doi.org/10.1016/j.compbiomed.2017.12.026CrossRefGoogle Scholar
  18. 18.
    Salas-Zárate, M. del P., Medina-Moreira, J., Lagos-Ortíz, K., Luna-Aveiga, H., Rodríguez-García, M.Á., Valencia-García, R.: Sentiment analysis on tweets about diabetes: an aspect-level approach. Comput. Math. Methods Med. 9 (2017).  https://doi.org/10.1155/2017/5140631CrossRefGoogle Scholar
  19. 19.
    Ji, X., Chun, S.A., Geller, J.: Monitoring public health concerns using twitter sentiment classifications. In: 2013 IEEE International Conference on Healthcare Informatics, pp. 335–344 (2013)Google Scholar
  20. 20.
    Yang, F.-C., Lee, A.J.T., Kuo, S.-C.: Mining health social media with sentiment analysis. J. Med. Syst. 40, 236 (2016).  https://doi.org/10.1007/s10916-016-0604-4CrossRefGoogle Scholar
  21. 21.
    Izzo, J.A., Maloy, K.: 86 sentiment analysis demonstrates variability in medical student grading. Ann. Emerg. Med. 70, S35–S36 (2017).  https://doi.org/10.1016/j.annemergmed.2017.07.111CrossRefGoogle Scholar
  22. 22.
    Alayba, A.M., Palade, V., England, M., Iqbal, R.: Arabic language sentiment analysis on health services. CoRR. abs/1702.0 (2017)Google Scholar
  23. 23.
  24. 24.
    Williams, A.: TwitterOAuth. https://twitteroauth.com/
  25. 25.
  26. 26.
    Plotly: Plotly.js, https://plot.ly/javascript/

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Francisco Javier Ramírez-Tinoco
    • 1
    Email author
  • Giner Alor-Hernández
    • 1
  • José Luis Sánchez-Cervantes
    • 2
  • María del Pilar Salas-Zárate
    • 1
  • Rafael Valencia-García
    • 3
  1. 1.Tecnológico Nacional de México/I.T. OrizabaOrizabaMéxico
  2. 2.Division of Research and Postgraduate StudiesCONACYT-Instituto Tecnológico de OrizabaOrizabaMéxico
  3. 3.Department of Computing and SystemsUniversity of MurciaMurciaSpain

Personalised recommendations