Advertisement

An Adaptive Trust Model for Achieving Emergent Cooperation in Ad Hoc Networks

  • Diego A. VegaEmail author
  • Juan P. Ospina
  • Julian F. Latorre
  • Jorge E. Ortiz
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 815)

Abstract

Cooperation is a fundamental part of both the Next Generation Networks (NGNs) and the expected applications of Industry 4.0. In such systems, there is no centralized control, and the system components require self-organize themselves to capturing, processing and analyzing real-world information with the purpose of delivering useful data to the final user. In this article, we aim to explore the cooperation mechanisms that could be used in the next generation of communication systems to produce collective behaviors that allow the member of the system join efforts to achieve individual and collective goals in environments without a centralized controller. We used socially inspired computing to introduced an adaptive trust model based on a theoretical analysis of cooperation through game theory and genetic algorithms. The results show the cooperation process can adapt itself even in environments with dynamic populations, selfish agents and communication failures.

Keywords

Self-organization Ad hoc networks Trust Cooperation Socially inspired computing 

References

  1. 1.
    Lu, Y.: Industry 4.0: a survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 6, 1–10 (2017)Google Scholar
  2. 2.
    Witkowski, K.: Internet of things, big data, industry 4.0 innovative solutions in logistics and supply chains management. Procedia Eng. 182, 763–769 (2017)CrossRefGoogle Scholar
  3. 3.
    Lee, J., Kao, H.A., Yang, S.: Service innovation and smart analytics for industry 4.0 and big data environment. Procedia CIRP 16, 3–8 (2014)CrossRefGoogle Scholar
  4. 4.
    Wang, S., Wan, J., Zhang, D., Li, D., Zhang, C.: Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination. Comput. Netw. 101, 158–168 (2016)CrossRefGoogle Scholar
  5. 5.
    Gudivada, V.N., Baeza-Yates, R., Raghavan, V.V.: Big Data: promises and problems. Computer 48(3), 20–23 (2015).  https://doi.org/10.1109/MC.2015.62CrossRefGoogle Scholar
  6. 6.
    Williams, S.: Business Intelligence Strategy and Big Data Analytics: A General Management Perspective. Elsevier Science (2016). https://books.google.com.co/books?id=xTpUCwAAQBAJ
  7. 7.
    Miller, H.G., Mork, P.: From data to decisions: a value chain for Big Data. IT Prof. 15(1), 57–59 (2013).  https://doi.org/10.1109/mitp.2013.11CrossRefGoogle Scholar
  8. 8.
    Tegmark, M.: Life 3.0: Being Human in the Age of Artificial Intelligence. Knopf (2017)Google Scholar
  9. 9.
    Bostrom, N.: Superintelligence. Dunod (2017)Google Scholar
  10. 10.
    Qiu, T., Chen, N., Li, K., Qiao, D., Fu, Z.: Heterogeneous ad hoc networks: architectures, advances and challenges. Ad Hoc Netw. 55, 143–152 (2017)CrossRefGoogle Scholar
  11. 11.
    Mejia, M., Peña, N., Muñoz, J.L., Esparza, O., Alzate, M.A.: A game theoretic trust model for on-line distributed evolution of cooperation inmanets. J. Netw. Comput. Appl. 34(1), 39–51 (2011)CrossRefGoogle Scholar
  12. 12.
    Latorre, J.F., Ospina, J.P., Ortiz, J.E.: A coalitional game for achieving emergent cooperation in ad hoc networks through sympathy and commitment. In: International Workshop on Experimental and Efficient Algorithms, pp. 352–362. Springer (2018)Google Scholar
  13. 13.
    Ospina, J.P., Ortiz, J.E.: Estimation of a growth factor to achieve scalable ad hoc networks. Ingeniería y Universidad 21(1), 49–70 (2017)Google Scholar
  14. 14.
    Buttyán, L., Hubaux, J.P.: Enforcing service availability in mobile ad-hoc wans. In: 2000 First Annual Workshop on Mobile and Ad Hoc Networking and Computing, MobiHOC, pp. 87–96. IEEE (2000)Google Scholar
  15. 15.
    Marias, G.F., Georgiadis, P., Flitzanis, D., Mandalas, K.: Cooperation enforcement schemes for manets: a survey. Wirel. Commun. Mob. Comput. 6(3), 319–332 (2006)CrossRefGoogle Scholar
  16. 16.
    Fitzek, F.H., Katz, M.D.: Mobile Clouds: Exploiting Distributed Resources in Wireless, Mobile and Social Networks. Wiley (2013)Google Scholar
  17. 17.
    Abdalzaher, M.S., Seddik, K., Elsabrouty, M., Muta, O., Furukawa, H., Abdel-Rahman, A.: Game theory meets wireless sensor networks security requirements and threats mitigation: a survey. Sensors 16(7) (2016).  https://doi.org/10.3390/s16071003CrossRefGoogle Scholar
  18. 18.
    Monsalve, S.: Teoría de juegos ¿hacia dónde vamos? Revista de economía institucional 4(7) (2008)Google Scholar
  19. 19.
    Nowak, M.A., Sasaki, A., Taylor, C., Fudenberg, D.: Emergence of cooperation and evolutionary stability in finite populations. Nature 428(6983), 646–650 (2004)CrossRefGoogle Scholar
  20. 20.
    Sigmund, K.: The Calculus of Selfishness. Princeton University Press (2010)Google Scholar
  21. 21.
    Olejarz, J., Ghang, W., Nowak, M.A.: Indirect reciprocity with optional interactions and private information. Games 6(4), 438–457 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Axelrod, R.M.: The Complexity of Cooperation: Agent-Based Models of Competition and Collaboration. Princeton University Press (1997)Google Scholar
  23. 23.
    Axelrod, R., Hamilton, W.D.: The evolution of cooperation. Science 211(4489), 1390–1396 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Bentham, J.: The Rationale of Reward. John and H. L. Hunt (1825)Google Scholar
  25. 25.
    VonNeumann, J., Morgenstern, O.: Theory of Games and Economic Behavior (2007)Google Scholar
  26. 26.
    Udehn, L.: The changing face of methodological individualism. Ann. Rev. Sociol. 28(1), 479–507 (2002).  https://doi.org/10.1146/annurev.soc.28.110601.140938CrossRefGoogle Scholar
  27. 27.
    Arrow, K.J.: Methodological individualism and social knowledge. Am. Econ. Rev. 84(2), 1–9 (1994)Google Scholar
  28. 28.
    Simon, H.A.: The New Science of Management Decision. Prentice Hall PTR, Upper Saddle River, NJ, USA (1977)Google Scholar
  29. 29.
    Kollock, P.: Social dilemmas: the anatomy of cooperation. Ann. Rev. Sociol. 24(1), 183–214 (1998)CrossRefGoogle Scholar
  30. 30.
    Hardin, G.: The tragedy of the commons. Science 162(3859), 1243–1248 (1968).  https://doi.org/10.1126/science.162.3859.1243CrossRefGoogle Scholar
  31. 31.
    Dawes, R.M.: Social dilemmas. Annu. Rev. Psychol. 31(1), 169–193 (1980).  https://doi.org/10.1146/annurev.ps.31.020180.001125CrossRefGoogle Scholar
  32. 32.
    Berkes, F., Feeny, D., McCay, B.J., Acheson, J.M.: The benefits of the commons. Nature 340, 91 (1989).  https://doi.org/10.1038/340091a0CrossRefGoogle Scholar
  33. 33.
    Rawls, J.: Teoríadelajusticia. Filosofía Series, Fondo de Cultura Económica (1995)Google Scholar
  34. 34.
    Sen, A.: The Idea of Justice. Harvard University Press (2009)Google Scholar
  35. 35.
    Sherratt, T.N., Roberts, G.: The importance of phenotypic defectors in stabilizing reciprocal altruism. Behav. Ecol. 12(3), 313–317 (2001).  https://doi.org/10.1093/beheco/12.3.313CrossRefGoogle Scholar
  36. 36.
    Chomatek, L., Duraj, A.: Efficient genetic algorithm for breast cancer diagnosis. Adv. Intell. Syst. Comput. 762, 64–76 (2019).  https://doi.org/10.1007/978-3-319-91211-0-6CrossRefGoogle Scholar
  37. 37.
    Thungrut, W., Wattanapongsakorn, N.: Diabetes classification with fuzzy genetic algorithm. Adv. Intell. Syst. Comput. 769, 107–114 (2019).  https://doi.org/10.1007/978-3-319-93692-5-11CrossRefGoogle Scholar
  38. 38.
    Ray, P., Panda, S., Mishra, D.: Short-term load forecasting using genetic algorithm. Adv. Intell. Syst. Comput. 711, 863–872 (2019).  https://doi.org/10.1007/978-981-10-8055-5-76CrossRefGoogle Scholar
  39. 39.
    Kommadath, R., Kotecha, P.: Optimization of stirling engine systems using single phase multi-group teaching learning based optimization and genetic algorithm. Adv. Intell. Syst. Comput. 669, 447–458 (2019).  https://doi.org/10.1007/978-981-10-8968-8-38CrossRefGoogle Scholar
  40. 40.
    Liu, J., Yao, C.: Rational competition and cooperation in ubiquitous agent communities. Knowl. Based Syst. 17(5–6), 189–200 (2004).  https://doi.org/10.1016/j.knosys.2004.06.002CrossRefGoogle Scholar
  41. 41.
    Tran, T., Vo, Q.: An axiomatic model for merging stratified belief bases by negotiation. Lect. Notes Comput. Sci. (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7653, 174–184 (2012).  https://doi.org/10.1007/978-3-642-34630-9-18CrossRefGoogle Scholar
  42. 42.
    Tran, T., Nguyen, N., Vo, Q.: Axiomatic characterization of belief merging by negotiation. Multimed. Tools Appl. 65(1), 133–159 (2013).  https://doi.org/10.1007/s11042-012-1136-7CrossRefGoogle Scholar
  43. 43.
    Chen, Q., Su, K., Hu, Y., Hu, G.: A complete coalition logic of temporal knowledge for multi-agent systems. Front. Comput. Sci. 91, 75–86 (2015).  https://doi.org/10.1007/s11704-014-4097-3MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Simon, H.A.: Models of Man, Social and Rational: Mathematical Essays on Rational Human Behavior in a Social Setting. Willey, New York (1957)zbMATHGoogle Scholar
  45. 45.
    Sen, A.K.: Rational fools: A critique of the behavioral foundations of economic theory. Philos. Public Aff. 6(4), 317–344 (1977).  https://doi.org/10.2307/2264946, http://dx.doi.org/10.2307/2264946
  46. 46.
    Sen, A.: Development as Freedom. Oxford Paperbacks (2001)Google Scholar
  47. 47.
    Sen, A.: Collective Choice and Social Welfare: Expanded Edition. Penguin, UK (2017)Google Scholar
  48. 48.
    Borkar, S., Ali, S.: Enhancing Opportunistic Routing for Cognitive Radio Network (2017)Google Scholar
  49. 49.
    Ding, Z., Liu, Y., Choi, J., Sun, Q., Elkashlan, M., Chih-Lin, I., Poor, H.V.: Application of non-orthogonal multiple access in LTE and 5g networks. IEEE Commun. Mag. 55(2), 185–191 (2017)CrossRefGoogle Scholar
  50. 50.
    De Boer, J.: Social preferences and context sensitivity. Games 8(4) (2017).  https://doi.org/10.3390/g8040043, http://www.mdpi.com/2073-4336/8/4/43MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Li, X., Bao, Y., Guo, Y.: Alliance formation under higher order uncertainty: embeddedness, fear, and gradualism. Manag. Decis. Econ. (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Diego A. Vega
    • 1
    Email author
  • Juan P. Ospina
    • 1
  • Julian F. Latorre
    • 1
  • Jorge E. Ortiz
    • 1
  1. 1.National University of Colombia, Research Group TLÖNBogotáColombia

Personalised recommendations