Advertisement

FASELOD: A Faceted Search Engine in Linked Open Datasets Using Voice Recognition

  • Betia Lizbeth López-Ochoa
  • José Luis Sánchez-CervantesEmail author
  • Giner Alor-Hernández
  • Mario Andrés Paredes-Valverde
  • José María Álvarez-Rodríguez
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 815)

Abstract

Commonly, web applications incorporate interfaces that are limited to data capture through traditional methods such as keyboard, mouse or touch screens, which makes interaction with these interfaces complicated and unnatural for less experienced users. For its part, the LOD (Linked Open Data) cloud covers a large number of domains including the medical domain, the information stored in the datasets of this domain have great high quality information related to drugs, dis-eases, studies, clinics, orphan drugs, to mention a few. On the other hand, the re-search of the NLP (Natural Language Processing) has presented great advances in the generation of artificially intelligent behaviors. This document presents the development of a faceted search engine on datasets that are part of the LOD cloud that provides a more natural and intuitive navigation through NLP. Through the use of facets, the user is provided with a list of results on which he performs an incremental refinement by selecting values of the facets of the data that become constraints on the dataset. FASELOD provides a mechanism based on Silk that allows obtaining other related results within other datasets that are part of the LOD cloud.

Keywords

Linked open data cloud Voice recognition Natural language processing Faceted navigation 

References

  1. 1.
    Polowinski, J.: Widgets for faceted browsing. In: Smith, M.J., Salvendy, G. (eds.) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5617 LNCS, no. PART 1, pp. 601–610. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)Google Scholar
  2. 2.
    Cambria, E., White, B.: Jumping NLP curves: a review of natural language processing research. IEEE Comput. Intell. Mag. 9(2), 48–57 (2014)CrossRefGoogle Scholar
  3. 3.
    Kumar, E.: Natural language processing. IK International Pvt Ltd. (2011)Google Scholar
  4. 4.
    Sikos, L.F.: Mastering structured data on the semantic web: from HTML5 Microdata to Linked Open Data. Apress (2015)Google Scholar
  5. 5.
    Andrejs, A., John, M.: The Linking Open Data cloud diagram (2017). Available from http://lod-cloud.net/
  6. 6.
    Suominen, O., Hyvönen, E., Viljanen, K., Hukka, E.: HealthFinland—a national semantic publishing network and portal for health information. Web Semant Sci. Serv. Agents World Wide Web 7(4), 287–297 (2009)CrossRefGoogle Scholar
  7. 7.
    Schmidt, D., Budde, K., Sonntag, D., Profitlich, H.-J., Ihle, M., Staeck, O.: A novel tool for the identification of correlations in medical data by faceted search. Comput. Biol. Med. 85, 98–105 (2017)CrossRefGoogle Scholar
  8. 8.
    Veeraraghavan, H., Miller, J.V.: Faceted visualization of three dimensional neuroanatomy by combining ontology with faceted search. Neuroinformatics 12(2), 245–259 (2014)CrossRefGoogle Scholar
  9. 9.
    Tablan, V., Bontcheva, K., Roberts, I., Cunningham, H.: Mímir: an open-source semantic search framework for interactive information seeking and discovery. Web Semant Sci. Serv. Agents World Wide Web 30, 52–68 (2015)CrossRefGoogle Scholar
  10. 10.
    Ben Abacha, A., Zweigenbaum, P.: MEANS: a medical question-answering system combining NLP techniques and semantic web technologies. Inf. Process. Manag. 51(5), 570–594 (2015)CrossRefGoogle Scholar
  11. 11.
    Teixeira, A., et al.: Speech-centric multimodal interaction for easy-to-access online services—a personal life assistant for the elderly. Procedia Comput. Sci. 27, 389–397 (2014)CrossRefGoogle Scholar
  12. 12.
    Murff, H.J., et al.: Automated identification of postoperative complications within an electronic medical record using natural language processing. JAMA 306(8), 848–855 (2011)CrossRefGoogle Scholar
  13. 13.
    Sung, S.-F., Chen, K., Wu, D.P., Hung, L.-C., Su, Y.-H., Hu, Y.-H.: Applying natural language processing techniques to develop a task-specific EMR interface for timely stroke thrombolysis: A feasibility study. Int. J. Med. Inform. 112, 149–157 (2018)CrossRefGoogle Scholar
  14. 14.
    Afzal, N., et al.: Natural language processing of clinical notes for identification of critical limb ischemia. Int. J. Med. Inform. 111, 83–89 (2018)CrossRefGoogle Scholar
  15. 15.
    Wi, C.-I., et al.: Natural language processing for asthma ascertainment in different practice settings. J. Allergy Clin. Immunol. Pract. 6(1), 126–131 (2018)CrossRefGoogle Scholar
  16. 16.
    Oyelade, O.N., Obiniyi, A.A., Junaidu, S.B., Adewuyi, S.A.: Patient symptoms elicitation process for breast cancer medical expert systems: a semantic web and natural language parsing approach. Futur. Comput. Inf. J. (2017)Google Scholar
  17. 17.
    Gao, H., Bowles, E.J.A., Carrell, D., Buist, D.S.M.: Using natural language processing to extract mammographic findings. J. Biomed. Inform. 54, 77–84 (2015)CrossRefGoogle Scholar
  18. 18.
    Carrell, D.S., et al.: Using natural language processing to identify problem usage of prescription opioids. Int. J. Med. Inform. 84(12), 1057–1064 (2015)CrossRefGoogle Scholar
  19. 19.
    Hossain, M.S., Muhammad, G.: Cloud-assisted speech and face recognition framework for health monitoring. Mob. Netw. Appl. 20(3), 391–399 (2015)CrossRefGoogle Scholar
  20. 20.
    Hossain, M.S.: Patient state recognition system for healthcare using speech and facial expressions. J. Med. Syst. 40(12), 272 (2016)Google Scholar
  21. 21.
    Derman, Y.D., Arenovich, T., Strauss, J.: Speech recognition software and electronic psychiatric progress notes: physicians’ ratings and preferences. BMC Med. Inform. Decis. Mak. 10(1), 44 (2010)CrossRefGoogle Scholar
  22. 22.
    Muhammad, G.: Automatic speech recognition using interlaced derivative pattern for cloud based healthcare system. Cluster Comput. 18(2), 795–802 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Yujian, L., Bo, L.: A normalized levenshtein distance metric. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1091–1095 (2007)CrossRefGoogle Scholar
  24. 24.
    La Obesidad en México (2018). Available from https://www.gob.mx/issste/articulos/la-obesidad-en-mexico

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Betia Lizbeth López-Ochoa
    • 1
  • José Luis Sánchez-Cervantes
    • 2
    Email author
  • Giner Alor-Hernández
    • 1
  • Mario Andrés Paredes-Valverde
    • 1
  • José María Álvarez-Rodríguez
    • 3
  1. 1.Tecnológico Nacional de México/ I.T. OrizabaOrizabaMéxico
  2. 2.Division of Research and Postgraduate StudiesCONACYT-Instituto Tecnológico de OrizabaOrizabaMéxico
  3. 3.Computer Science DepartmentCarlos III University of MadridLeganés, MadridSpain

Personalised recommendations