Dissolution of Sapphire and Alumina–Magnesia Particles in CaO–SiO2–Al2O3 Liquid Slags

  • Hamed Abdeyazdan
  • Neslihan DoganEmail author
  • Raymond J. Longbottom
  • M. Akbar Rhamdhani
  • Michael W. Chapman
  • Brian J. Monaghan
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Understanding the dissolution kinetics of non-metallic inclusions in liquid slag is key in optimization of slag composition for inclusion removal. In this study, the rate of dissolution of high-precision spheres of sapphire and alumina–magnesia particles in CaO–SiO2–Al2O3 liquid slags was measured in situ using a laser scanning confocal microscope at 1500 °C. It was found that the rate of dissolution of both sapphire and alumina–magnesia particles increased when the slag basicity is increased. A layer was observed around the dissolving sapphire. This layer may be a product layer and/or indicative of a mass transfer rate-controlling system. In the case of alumina–magnesia particle, the kinetics appeared more complex and depended on slag composition. No product layer or mass transfer layer was observed around the particle dissolving in slag with low basicity, whereas for the high basicity slag, a product or stagnant layer was observed, similar to that of the sapphire particle. Assuming a mass transfer-controlled system, measured diffusion coefficients for sapphire particles in slags tested in this study ranged from 10−11 to 10−10 m2 s−1 at 1500 °C.


Dissolution kinetics Inclusion removal Slag Inclusions Clean steel 



The authors acknowledge the support of BlueScope and the use of the Australian Research Council funded JEOL-JSM 6490 LV SEM at the UOW Electron Microscopy Centre.


  1. 1.
    Lowe JH, Mitchell A (1995) Clean steel. Institute of Materials, London, p 223Google Scholar
  2. 2.
    Deo B, Boom R (1993) Fundamentals of steelmaking metallurgy. Prentice Hall International, New York, p 254Google Scholar
  3. 3.
    Seetharaman, S (Ed) (2008) Fundamentals of metallurgy. Woodhead Publishing in Materials Cambridge, England, p 23Google Scholar
  4. 4.
    Linder S (1974) Scand J Metall 3:137–150Google Scholar
  5. 5.
    Miki Y, Thomas BG (1999) Metall Mater Trans B 30B:639–654CrossRefGoogle Scholar
  6. 6.
    Hallberg M, Jönsson PG, Jonsson TLI, Eriksson R (2005) Scad J Metall 34:41–56CrossRefGoogle Scholar
  7. 7.
    Strandh J, Nakajima K, Eriksson R, Jönsson P (2005) ISIJ Int 45:1597–1606CrossRefGoogle Scholar
  8. 8.
    Shannon G, White L, Sridhar S (2008) Mater Sci Eng, A 495:310–315CrossRefGoogle Scholar
  9. 9.
    Strandh J, Nakajima K, Eriksson R, Jönsson P (2005) ISIJ Int 45:1838–1847CrossRefGoogle Scholar
  10. 10.
    Sichen D (2012) Steel Res Int 83:825–841CrossRefGoogle Scholar
  11. 11.
    Seetharaman, S (ed) (2008) Fundamentals of metallurgy. Woodhead Publishing in Materials Cambridge, England, pp 23–30Google Scholar
  12. 12.
    Valdez M, Prapakorn K, Cramb AW, Sridhar S (2001) Ironmak Steelmak 29(1):47–52CrossRefGoogle Scholar
  13. 13.
    Yu X, Pomfret RJ, Coley KS (1997) Metall Mater Trans B 28(2):275–279CrossRefGoogle Scholar
  14. 14.
    Taira S, Nakashima K, Mori K (1993) ISIJ Int 33(1):116–123CrossRefGoogle Scholar
  15. 15.
    Goto K, Argent BB, Lee WE (1997) J Am Ceram Soc 80:461–471CrossRefGoogle Scholar
  16. 16.
    Sarpoolaky H, Ghanbari-Ahari K, Molin J, Lee WE (2001) Stahl Eisen 122:130–133Google Scholar
  17. 17.
    Sandhage KH, Yurek GJ (1990) J Am Ceram Soc 73:3633–3642CrossRefGoogle Scholar
  18. 18.
    Sandhage KH, Yurek GJ (1990) J Am Ceram Soc 73:3643–3649CrossRefGoogle Scholar
  19. 19.
    Sandhage KH, Yurek GJ (1988) J Am Ceram Soc 71:478–489CrossRefGoogle Scholar
  20. 20.
    Sandhage KH, Yurek GJ (1991) J Am Ceram Soc 74:1941–1954CrossRefGoogle Scholar
  21. 21.
    Ueda K (1999) Mater Trans, JIM 63:989–993Google Scholar
  22. 22.
    Lee MS, Wright S, Jahanshahi S (2001) Metall Mater Trans B 32B:25–29CrossRefGoogle Scholar
  23. 23.
    Dick AF, Yu X, Pomfret RJ, Coley KS (1997) ISIJ Int 37(2):102–108CrossRefGoogle Scholar
  24. 24.
    Chung YD, Schlesinger ME (1994) J Am Ceram Soc 77:611–616CrossRefGoogle Scholar
  25. 25.
    Xiang S, Lv X, Yu B, Xu J, Yin J (2014) Metall Mater Trans B 45B:2106–2117CrossRefGoogle Scholar
  26. 26.
    Amini SH, Brungs MP, Jahanshahi S, Ostrovski O (2006) Metall Mater Trans B 37B:773–780CrossRefGoogle Scholar
  27. 27.
    Taira S, Machida A, Nakashima K, Mori K (1996) Tetsu-to-Hagané 82:99–104CrossRefGoogle Scholar
  28. 28.
    Choi JY, Lee HG, Kim JS (2002) ISIJ Int 42(8):852–860CrossRefGoogle Scholar
  29. 29.
    Cho, WD, Fan, P (2002) EPD cong. and fundamentals of advanced materials for energy conversion, Seatlle, WA, USA, TMS, pp 631–638Google Scholar
  30. 30.
    Sridhar S, Cramb AW (2000) Metall Mater Trans B 32(2):406–410CrossRefGoogle Scholar
  31. 31.
    Monaghan BJ, Chen L (2004) J Non-Cryst Solids 347:254–261CrossRefGoogle Scholar
  32. 32.
    Monaghan BJ, Chen L (2005) Steel Res Int 76:348–354CrossRefGoogle Scholar
  33. 33.
    Monaghan BJ, Chen L, Sorbe J (2005) Ironmak Steelmak 32(3):258–264CrossRefGoogle Scholar
  34. 34.
    Monaghan, BJ, Nightingale, SA, Chen, L, Brooks, GA (2004) Molten 2004 conference, Johannesburg, South Africa, SAIMM, pp 585–594Google Scholar
  35. 35.
    Lee SH, Tse C, Yi KW, Misra P, Chevrier V, Orrling C (2001) J Non-Cryst Solids 282:41–48CrossRefGoogle Scholar
  36. 36.
    Fox AB, Valdez ME, Gisby J, Atwood RC, Lee PD, Sridhar S (2004) ISIJ Int 44(5):836–845CrossRefGoogle Scholar
  37. 37.
    Soll-Morris H, Sawyer C, Zhang ZT, Shannon GN, Nakano J, Sridhar S (2009) Fuel 88:670–682CrossRefGoogle Scholar
  38. 38.
    Liu J, Verhaeghe F, Guo M, Blanpain B, Wollants P (2007) J Am Ceram Soc 90(12):3818–3824Google Scholar
  39. 39.
    Michelic S, Goriupp J, Feichtinger S, Kang YB, Bernhard C, Schenk J (2016) Steel Res Int 87(1):57–67CrossRefGoogle Scholar
  40. 40.
    Valdez M, Prapakorn K, Cramb AW, Sridhar S (2001) Steel Res 72(8):291–297CrossRefGoogle Scholar
  41. 41.
    Tse C, Lee SH, Sridhar S, Cramb AW (2000) 83rd steelmaking conference, Pittsburgh, PA, USA, pp 219–229Google Scholar
  42. 42.
    Monaghan BJ, Chen L (2006) Ironmak Steelmak 33(4):323–330CrossRefGoogle Scholar
  43. 43.
    Yi KW, Tse C, Park JH, Valdez M, Cramb AW, Sridhar S (2003) Scand J Metall 32:177–184CrossRefGoogle Scholar
  44. 44.
    Feichtinger S, Michelic SK, Kang YB, Bernhard C (2014) J Am Ceram Soc 97:316–327CrossRefGoogle Scholar
  45. 45.
    Park JH, Park JG, Min DJ, Lee YE, Kang YB (2010) J Eur Ceram Soc 30:3181–3186CrossRefGoogle Scholar
  46. 46.
    Levenspiel, O (1993) The chemical reactor omnibook. OSU Book Stores, Corvalis, OR, USA, pp 51.1–51.6Google Scholar
  47. 47.
    Levenspiel, O (ed) (1999) Chemical reaction engineering, 3rd edn. Wiley, New York, NY, USA, pp 566–588Google Scholar
  48. 48.
    Mills, KC (1991) Slags model (ed 1.07). National Physical Laboratory, UKGoogle Scholar
  49. 49.
    Davies RH, Dinsdale AT, Gisby JA, Hodson SM, Ball RGJ (1994) Applications of thermodynamics in the synthesis and processing of materials, Rosemont, IL, USA, pp 371–384Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Hamed Abdeyazdan
    • 1
  • Neslihan Dogan
    • 3
    Email author
  • Raymond J. Longbottom
    • 1
  • M. Akbar Rhamdhani
    • 2
  • Michael W. Chapman
    • 4
  • Brian J. Monaghan
    • 1
  1. 1.PYROmetallurgical Research Group, School of Mechanical, Materials, Mechatronic and Biomedical EngineeringUniversity of WollongongWollongongAustralia
  2. 2.Department of Mechanical and Product Design EngineeringSwinburne University of TechnologyHawthornAustralia
  3. 3.Department of Materials Science and EngineeringMcMaster UniversityHamiltonCanada
  4. 4.BlueScope LtdPort KemblaAustralia

Personalised recommendations