Advertisement

Comparison of Dissolution Kinetics of Nonmetallic Inclusions in Steelmaking Slag

  • Mukesh SharmaEmail author
  • Neslihan Dogan
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Nonmetallic oxide inclusions of Al2O3, Al2TiO5, and CaO · 2Al2O3 (CA2) types are responsible for clogging of ceramic nozzles during liquid steel processing. The dissolution of these inclusions in steelmaking slags alleviates the clogging phenomenon. The in situ dissolution behavior a single oxide particle is studied in a synthetic CaO–Al2O3–SiO2 type slag using a high-temperature confocal scanning laser microscope at 1550 °C. The rate determining step for Al2O3 and CA2 inclusions was confirmed to be mass transport control in slag. The rate determining step for dissolution of Al2TiO5 needs further investigation. The rate of dissolution varied in the order from slowest to fastest: Al2O3 < CA2 < Al2TiO5.

Keywords

Inclusion dissolution Alumina Aluminum titanate Calcium aluminate Confocal scanning laser microscope 

References

  1. 1.
    Rackers KG, Thomas BG (1995) 78th steelmak. Conf Proc 78:723Google Scholar
  2. 2.
    Zhang L, Thomas BG (Nov. 2003) XXIV National Steelmaking Symposium. Morelia, Mich, Mexico 26–28:138–183Google Scholar
  3. 3.
    Cramb AW, Maddalena RL (2003) Refract materials, 11th edn. AISE Steel Foundation, Pittsburgh, pp 2–5Google Scholar
  4. 4.
    Thornton PA (1971) J Mater Sci 6:347CrossRefGoogle Scholar
  5. 5.
    Lee SH, Tse C, Yi KW, Misra P, Chevrier V, Orrling C, Sridhar S, Cramb AW (2001) J Non Cryst Solids 282:41CrossRefGoogle Scholar
  6. 6.
    Valdez M, Prapakorn K, Cramb AW, Sridhar S (2002) Ironnmak Steelmak 29:47CrossRefGoogle Scholar
  7. 7.
    Liu J, Verhaeghe F, Guo M, Blanpain B, Wollants P (2007) J Am Ceram Soc 90:3818Google Scholar
  8. 8.
    Sridhar S, Cramb AW (2003) High Temp Mater Process 22:275CrossRefGoogle Scholar
  9. 9.
    Valdez M, Shannon GS, Sridhar S (2006) ISIJ Int 46:450CrossRefGoogle Scholar
  10. 10.
    Michelic S, Goriupp J, Feichtinger S, Kang YB, Bernhard C, Schenk J (2016) Steel Res Int 87:57CrossRefGoogle Scholar
  11. 11.
    Monaghan BJ, Chen L (2004) J Non Cryst Solids 347:254CrossRefGoogle Scholar
  12. 12.
    Yin HB, Shibata H, Emi T, Suzuki M (1997) ISIJ Int 37:936CrossRefGoogle Scholar
  13. 13.
    Orrling C, Phinichka N, Sridhar S, Cramb AW, Fang Y (2000) JOM 51:1Google Scholar
  14. 14.
    Chikama H, Shibata H, Emi T, Suzuki M (1996) Mater Trans 37:620CrossRefGoogle Scholar
  15. 15.
    Shibata H, Arai Y, Suzuki M, Emi T (2000) Metall Mater Trans B 31:981Google Scholar
  16. 16.
    Phelan D, Reid MH, Dippenaar R (2005) Microsc Microanal 11:670CrossRefGoogle Scholar
  17. 17.
    Sridhar S (2005) Application of confocal scanning laser microscopy to steel research. In: The 3rd international congress on the science and technology of steelmaking, Charlotte, NC. AIST, Warrendale, PAGoogle Scholar
  18. 18.
    Verhaeghe F, Liu J, Guo M, Arnout S, Blanpain B, Wollants P (2007) Appl Phys Lett 91:124104CrossRefGoogle Scholar
  19. 19.
    Sridhar S, Cramb AW (2000) Metall Mater Trans B 31:406CrossRefGoogle Scholar
  20. 20.
    Yi KW, Tse C, Park JH, Valdez M, Cramb AW, Sridhar S (2003) Scand J Metall 32:177CrossRefGoogle Scholar
  21. 21.
    Monaghan BJ, Chen L (2005) Steel Res Int 76:346CrossRefGoogle Scholar
  22. 22.
    Fox AB, Valdez ME, Gisby J, Atwood RC, Lee PD, Sridhar S (2004) ISIJ Int 44:836CrossRefGoogle Scholar
  23. 23.
    Park JH, Jung I, Lee H (2006) ISIJ Int 46:1626CrossRefGoogle Scholar
  24. 24.
    Liu J, Guo M, Jones PT, Verhaeghe F, Blanpain B, Wollants P (2007) J Eur Ceram Soc 27:1961CrossRefGoogle Scholar
  25. 25.
    Monaghan BJ, Chen L (2006) Ironmak Steelmak 33:323CrossRefGoogle Scholar
  26. 26.
    Monaghan BJ, Chen L, Sorbe J (2005) Ironmak Steelmak 32:258CrossRefGoogle Scholar
  27. 27.
    Feichtinger S, Michelic SK, Kang YB, Bernhard C (2014) J Am Ceram Soc 97:316CrossRefGoogle Scholar
  28. 28.
    Guo X, Guo M, Sun Z, Van Dyck J, Blanpain B, Wollants P (2010) Materials science and technology conference, pp 1739–1750Google Scholar
  29. 29.
    Miao K, Haas A, Sharma M, Mu W, Dogan N (2018) Metall Mater Trans B 49:1612Google Scholar
  30. 30.
    Sharma M, Mu W, Dogan N (2018) JOM 70:1220CrossRefGoogle Scholar
  31. 31.
    Sharma M, Dabkowska HA, Dogan N (2018) Steel Res Int 1800367:1Google Scholar
  32. 32.
    Sharma M, Mu W, Dogan N (2018) AISTech 2018, pp 2601–2608Google Scholar
  33. 33.
    Allibert M, Gaye H, Geisler J, Janke D, Keene BJ, Kirner D, Kowalski M, Lehmann J, Mills KC, Neuschutz D, Parra R, Saint Jours C, Spencer PJ, Susa M, Tmar M, Woermann E (1995) Slag Atlas, 2nd edn. Dusseldorf, p 48Google Scholar
  34. 34.
    Levenspiel O (1999) Chemical reaction engineering, 3rd edn. Wiley, New YorkGoogle Scholar
  35. 35.
    De Arenas IB (2012) In: Lakshmanan DA (eds) Sintering of ceramics—new emerging techniques, 1st edn. InTech, p 503Google Scholar
  36. 36.
    Yan P, Webler BA, Pistorius PC, Fruehan RJ (2015) Metall Mater Trans B 46:2414CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Steel Research CenterMcMaster UniversityHamiltonCanada

Personalised recommendations