A Bayesian Network Model for Yellow Rust Forecasting in Winter Wheat

  • Xiaodong YangEmail author
  • Chenwei Nie
  • Jingcheng Zhang
  • Haikuan Feng
  • Guijun Yang
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 545)


Yellow rust (YR) is one of the most destructive diseases of wheat. We introduced the Bayesian network analysis as a core method and develop a large-scale YR forecasting model based on several important meteorological variables that associate with disease occurrence. To guarantee an effective model calibration and validation, we used multiple years (2010–2012) of meteorological data and the ground survey data in Gansu Province where the YR intimidated most severely in China. The validation results showed that the disease forecasting model is able to produce a reasonable risk map to indicate the disease pressure across the region. In addition, the temporal dispersal of YR can also be delineated by the model. Through a comparison with some classic methods, the Bayesian network outperformed BP neutral network and FLDA in accuracy, which thereby suggested a great potential of Bayesian network in disease forecasting at a regional scale.


Yellow rust Meteorological factor Bayesian network Forecasting model 



This work was supported by the National Key R&D Program (2016YFD0300602) and the National Natural Science Foundation of China (41101395, 41601346).


  1. 1.
    Zeng, S.M.: Interregional spread of wheat Yellow Rust in China. Acta Phytopathol. Sin. 18(4), 219–223 (1988)Google Scholar
  2. 2.
    Yang, Z.W., Shang, H.S., Pei, H.Z., Xie, Y.L.: Dynamic forecasting of stripe rust of winter wheat. Sci. Agric. Sin. 24(6), 45–50 (1991)Google Scholar
  3. 3.
    Hu, X.P., Yang, Z.W., Li, Z.Q., Deng, Z.Y., Ke, C.H.: Prediction of wheat stripe rust in Hanzhong area by BP network. Acta Agric. Boreali-Occidentails Sin. 9(3), 28–31 (2000)Google Scholar
  4. 4.
    Wan, A.M., Zhao, Z.H., Wu, L.R.: Reviews of occurrence of wheat stripe rust disease in 2002 in China. Plant Prot. 29(2), 5–8 (2003)Google Scholar
  5. 5.
    Zeng, S.M.: Macro-phytopathology. Agriculture Press of China, Beijing (2005)Google Scholar
  6. 6.
    Chen, G., Wang, H.G., Ma, Z.H.: Forecasting wheat stripe rust by discrimination analysis. Plant Prot. 32(4), 24–27 (2006)Google Scholar
  7. 7.
    Liu, R.Y., Ma, Z.H.: The prediction methodology of wheat stripe rust using combination model based on GM (1,1). J. Biomath. 22(2), 343–347 (2007)Google Scholar
  8. 8.
    Yuan, L., Li, S.Q.: Prediction of wheat stripe rust by wavelet neural network. Microcomput. Inf. 25(12–2), 42–43 (2009)Google Scholar
  9. 9.
    Cooke, B.M., Jones, D.G., Kaye, B.: The Epidemiology of Plant Diseases. Springer, Netherlands (2006). Scholar
  10. 10.
    Xu, Y.P., Yao, X.H., Wang, C.S., An, W., Duan, Y.L.: Meteorological prediction of formation and development of winter-wheat stripe rust in Tianshui City, Gansu Province. J. Nat. Disasters 20(1), 142–148 (2011)Google Scholar
  11. 11.
    Pan, Y.Z., Gong, D.Y., Deng, L., Li, J., Gao, J.: Smart distance searching-based and DEM-informed interpolation of surface air temperature in China. Acta Geogr. Sin. 59(3), 366–374 (2004)Google Scholar
  12. 12.
    Li, J.L., Zhang, J., Zhang, C., Chen, Q.G.: Analyze and compare the spatial interpolation methods for climate factor. Pratacultural Sci. 23(8), 6–11 (2006)Google Scholar
  13. 13.
    Wang, H.X., Liu, X.N., Ren, Z.C., Wei, J.Q., Pan, D.R., Hou, J.J.: Spatial interpolation of a precipitation-a case of Gansu Province. Grassl. Turf 32(5), 12–16 (2012)Google Scholar
  14. 14.
    Wang, Z., Shi, Q.D., Chang, S.L., Wu, Y.J., Liang, F.C.: Study on spatial interpolation method of mean air temperature in Xinjiang. Plateau Meteorol. 31(1), 201–208 (2012)Google Scholar
  15. 15.
    Zhang, L.W., Guo, H.P.: Introduction to Bayesian Networks. Science Press, Beijing (2006)Google Scholar
  16. 16.
    Jiang, L.X.: Research on naive Bayes classifiers and its improved algorithms. China University of Geosciences, Wuhan (2009)Google Scholar
  17. 17.
    Van Maanen, A., Xu, X.M.: Modelling plant disease epidemics. Eur. J. Plant Pathol. 109, 669–682 (2003)CrossRefGoogle Scholar
  18. 18.
    de Vallavieille-Pope, C., Huber, L., Leconte, M., Goyeau, H.: Comparative effects of temperature and interrupted wet periods on germination, penetration, and infection of Puccinia recondita f.sp.tritici and P.striifornis on wheat seedlings. Ecol. Epidemiol. 85(4), 409–415 (1994)Google Scholar
  19. 19.
    de Vallavieille-Pope, C., Huber, L., Leconte, M., Bethenod, O.: Preinoculation effects of light quantity on infection efficiency of Puccinia striiformis and P.triticina on wheat seedlings. Phytopathology 92(12), 1308–1314 (2002)CrossRefGoogle Scholar
  20. 20.
    Madden, L.V.: Rainfall and the dispersal of fungal spores. Adv. Plant Pathol. 8, 39–79 (1992)Google Scholar
  21. 21.
    Madden, L.V., Yang, X., Wilson, L.L.: Effects of rain intensity on splash dispersal of Colletotrichum acutatum. Phytopathology 86, 864–874 (1996)CrossRefGoogle Scholar
  22. 22.
    Madden, L.V.: Effects of rain on splash dispersal of fungal pathogens. Can. J. Plant Pathol. 19, 225–230 (1997)CrossRefGoogle Scholar
  23. 23.
    Madden, L.V., Wilson, L.L., Ntahimpera, N.: Calibration and evaluation of an electronic sensor for rainfall kinetic energy. Phytopathology 88, 950–959 (1998)CrossRefGoogle Scholar
  24. 24.
    Rapilly, F.: Yellow rust epidemiology. Annu. Rev. Phytopathol. 17, 59–73 (1979)CrossRefGoogle Scholar
  25. 25.
    Coakley, S.M., Line, R.F.: Quantitative relationships between climatic and stripe rust epidemics on winter wheat. Ecol. Epidemiol. 71(4), 461–467 (1981)Google Scholar
  26. 26.
    Coakley, S.M., Boyd, W.S., Line, R.F.: Development of regional models that use meteorological variables for predicting stripe rust disease on winter wheat. J. Clim. Appl. Meteorol. 23, 1234–1240 (1984)CrossRefGoogle Scholar
  27. 27.
    Coakley, S.M., Line, R.F., McDaniel, L.R.: Predicting stripe rust severity on winter wheat using an improved method for analyzing meteorological and rust data. Ecol. Epidemiol. 78(5), 543–550 (1988)Google Scholar
  28. 28.
    Friedman, N.: Bayesian network classifiers. Mach. Learn. 29, 131–163 (1997)CrossRefGoogle Scholar
  29. 29.
    Ferreiro, S., Sierra, B., Irigoien, I., Gorritxategi, E.: A Bayesian network for burr detection in the drilling process. J. Intell. Manuf. 23, 1463–1475 (2012)CrossRefGoogle Scholar
  30. 30.
    Te Beest, D.E., Paveley, N.D., Shaw, M.W., Van Den Bosch, F.: Disease-weather relationships for powdery mildew and yellow rust on winter wheat. Phytopathology 98(5), 609–617 (2008)CrossRefGoogle Scholar
  31. 31.
    Wang, H., Ma, Z.: Prediction of wheat stripe rust based on neural networks. In: Li, D., Chen, Y. (eds.) CCTA 2011. IAICT, vol. 369, pp. 504–515. Springer, Heidelberg (2012). Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  • Xiaodong Yang
    • 1
    • 2
    Email author
  • Chenwei Nie
    • 3
  • Jingcheng Zhang
    • 4
  • Haikuan Feng
    • 1
    • 2
  • Guijun Yang
    • 1
    • 2
  1. 1.Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture P. R. ChinaBeijing Research Center for Information Technology in AgricultureBeijingChina
  2. 2.National Engineering Research Center for Information Technology in AgricultureBeijingChina
  3. 3.Institute of Remote Sensing and Digital Earth of Chinese Academy of SciencesBeijingChina
  4. 4.College of Life Information and Instrument EngineeringHangzhou Dianzi UniversityHangzhouChina

Personalised recommendations