Advertisement

Interfaces for Science: Conceptualizing an Interactive Graphical Interface

  • Bruno AzevedoEmail author
  • Ana Alice Baptista
  • Jorge Oliveira e Sá
  • Pedro Branco
  • Rubén Tortosa
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 265)

Abstract

6,849.32 new research journal articles are published every day. The exponential growth of Scientific Knowledge Objects (SKOs) on the Web, makes searches time-consuming. Access to the right and relevant SKOs is vital for research, which calls for several topics, including the visualization of science dynamics. We present an interface model aimed to represent of the relations that emerge in the science social space dynamics, namely through the visualization and navigation of the relational structures between researchers, SKOs, knowledge domains, subdomains, and topics. This interface considers the relationship between the researcher who reads and shares the relevant articles and the researcher who wants to find the most relevant SKOs within a subject matter. This article presents the first iteration of the conceptualization process of the interface layout, its interactivity and visualization structures. It is essential to consider the hierarchical and relational structures/algorithms to represent the science social space dynamics. These structures are not being used as analysis tools, because it is not objective to show the linkage properties of these relationships. Instead, they are used as a means of representing, navigating and exploring these relationships. To sum up, this article provides a framework and fundamental guidelines for an interface layout that explores the social science space dynamics between the researcher who seeks relevant SKOs and the researchers who read and share them.

Keywords

Information visualization Design Interface 

Notes

Acknowledgements

This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundação para a Ciência e Tecnologia within the Project Scope: (UID/CEC/00319/2013) and the Project IViSSEM: ref: POCI-01-0145-FEDER-28284.

References

  1. 1.
    Castells, M.: The Information Age Economy, Society, and Culture: The Rise of the Network Society, 2nd edn. Wiley-Blackwell Publishing, Hoboken (2010)Google Scholar
  2. 2.
    Fortunato, S., Bergstrom, C.T., Börner, K., et al.: Science of science. Science (80-) 359, eaao0185 (2018).  https://doi.org/10.1126/science.aao0185CrossRefGoogle Scholar
  3. 3.
    Barabasi, A., Albert, R.: Emergence of scaling in random networks. Science (80-) 286, 509–512 (1999).  https://doi.org/10.1126/science.286.5439.509
  4. 4.
    Albert, R., Barabasi, A.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002).  https://doi.org/10.1088/1478-3967/1/3/006MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Wright, A.: Glut: Mastering Information Through the Ages. Cornell University Press, Ithaca (2008)Google Scholar
  6. 6.
    Simon, H.A.: The Sciences of the Artificial. MIT Press, Cambridge (1996)Google Scholar
  7. 7.
    Hidalgo, C.: Why Information Grows: The Evolution of Order, from Atoms to Economies. Basic Books, New York (2015)Google Scholar
  8. 8.
    Azevedo, B.M., e Sa, J.O., Baptista, A.A., Branco, P.: Information visualization: conceptualizing new paths for filtering and navigate in scientific knowledge objects. In: 2017 24o Encontro Português de Computação Gráfica e Interação (EPCGI), pp. 85–92. IEEE, Guimarães (2017).  https://doi.org/10.1109/EPCGI.2017.8124310
  9. 9.
    Börner, K., Chen, C.: Visual Interfaces to Digital Libraries. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-36222-3CrossRefzbMATHGoogle Scholar
  10. 10.
    Thackara, J.: In the Bubble: Designing in a Complex World. MIT Press, Cambridge (2006)Google Scholar
  11. 11.
    Ware, M., Mabe, M.: The STM report: an overview of scientific and scholarly journal publishing (2015). https://www.stm-assoc.org/2015_02_20_STM_Report_2015.pdf. Accessed 14 Feb 2016
  12. 12.
    Wurman, R.S.: Information Anxiety 2, 2nd edn. QUE, London (2001)Google Scholar
  13. 13.
    Card, S., Mackinlay, J., Shneiderman, B.: Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, Burlington (1999)Google Scholar
  14. 14.
    Marks, L., Hussell, J.A.T., McMahon, T.M., Luce, R.E.: ActiveGraph: a digital library visualization tool. Int. J. Digit. Libr. 5, 57–69 (2005).  https://doi.org/10.1007/s00799-004-0110-zCrossRefGoogle Scholar
  15. 15.
    Mazza, R.: Introduction to Information Visualization. Springer, London (2009).  https://doi.org/10.1007/978-1-84800-219-7CrossRefGoogle Scholar
  16. 16.
    Meirelles, I.: Design for Information: An Introduction to the Histories, Theories, and Best Practices Behind Effective Information Visualizations. Rockport Publishers, Beverly (2013)Google Scholar
  17. 17.
    Börner, K., Polley, D.E.: Visual Insights. MIT Press, Cambridge (2014)Google Scholar
  18. 18.
    Börner, K., Chen, C.: Visual interfaces to digital libraries: motivation, utilization, and socio-technical challenges. In: Börner, K., Chen, C. (eds.) Visual Interfaces to Digital Libraries. LNCS, vol. 2539, pp. 1–9. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-36222-3_1CrossRefzbMATHGoogle Scholar
  19. 19.
    Kim, B., Scott, J., Kim, S.: Exploring digital libraries through visual interfaces. In: Digital Libraries - Methods and Applications, pp 123–137. InTech (2011).  https://doi.org/10.5772/14255Google Scholar
  20. 20.
    Ware, C.: Information Visualization: Perception for Design, 3rd edn. Morgan Kaufmann Publishers, Burlington (2012)Google Scholar
  21. 21.
    Johnson, B., Shneiderman, B.: Tree-maps: a space-filling approach to the visualization of hierarchical information structures. In: Proceeding Visualization 1991, pp 284–291. IEEE Computer Society Press (1991).  https://doi.org/10.1109/VISUAL.1991.175815
  22. 22.
    Shneiderman, B.: Tree visualization with tree-maps: 2-D space-filling approach. ACM Trans. Graph. 11, 92–99 (1992).  https://doi.org/10.1145/102377.115768CrossRefzbMATHGoogle Scholar
  23. 23.
    Bederson, B.B., Shneiderman, B., Wattenberg, M.: Ordered and quantum treemaps: making effective use of 2D space to display hierarchies. ACM Trans. Graph. 21, 833–854 (2002).  https://doi.org/10.1145/571647.571649CrossRefGoogle Scholar
  24. 24.
    Long, L.K., Hui, L.C., Fook, G.Y., Wan Zainon, W.M.N.: A study on the effectiveness of tree-maps as tree visualization techniques. Procedia Comput. Sci. 124, 108–115 (2017).  https://doi.org/10.1016/j.procs.2017.12.136CrossRefGoogle Scholar
  25. 25.
    Bruls, M., Huizing, K., van Wijk, J.J.: Squarified treemaps. In: de Leeuw, W.C., van Liere, R. (eds.) Data Visualization 2000. EUROGRAPH, pp. 33–42. Springer, Vienna (2000).  https://doi.org/10.1007/978-3-7091-6783-0_4CrossRefGoogle Scholar
  26. 26.
    Shneiderman, B., Wattenberg, M.: Ordered treemap layouts. In: 2001 IEEE Symposium on Information Visualization. INFOVIS 2001, pp 73–78. IEEE (2001).  https://doi.org/10.1109/INFVIS.2001.963283
  27. 27.
    Cesarano, A., Ferrucci, F., Torre, M.: A heuristic extending the Squarified treemapping algorithm. In: CoRR (2016). https://arxiv.org/pdf/1609.00754.pdf. Accessed 6 Apr 2017
  28. 28.
    Book, G., Keshary, N.: Radial tree graph drawing algorithm for representing large hierarchies, University of Connecticut (2001). http://gbook.org/projects/
  29. 29.
    Ka-Ping, Y., Fisher, D., Dhamija, R., Hearst, M.: Animated exploration of dynamic graphs with radial layout. In: 2001 IEEE Symposium on Information Visualization. INFOVIS 2001, pp. 43–50. IEEE (2001).  https://doi.org/10.1109/INFVIS.2001.963279
  30. 30.
    Sheth, N., Cai, Q.: Visualizing MeSH dataset using radial tree layout (2003). http://iv.slis.indiana.edu/sw/papers/radialtree.pdf
  31. 31.
    Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hierarchical data. IEEE Trans. Vis. Comput. Graph. 12, 741–748 (2006).  https://doi.org/10.1109/TVCG.2006.147CrossRefGoogle Scholar
  32. 32.
    Monteiro, A., Miguel, B.: Harnessing user’s knowledge in the construction of rating flows: the design of a collaborative system applied to academic repositories. In: Ortuño, B.H. (ed.) 2016 6th International Forum of Design as a Process: Systems & Design Beyond Processes and Thinking, pp. 780–792. Editorial Universitat Politècnica de València (2016).  https://doi.org/10.4995/IFDP.2016.3308

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  1. 1.ALGORITMI Research CentreUniversity of MinhoGuimarãesPortugal
  2. 2.Polytechnic University of ValenciaValenciaSpain

Personalised recommendations