Advertisement

Creative Approaches on Interactive Visualization and Characterization at the Nanoscale

  • João Martinho MouraEmail author
  • Jordi LlobetEmail author
  • Marco Martins
  • João Gaspar
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 265)

Abstract

Visualizing and characterizing scientific data from observations at the nanoscale is a challenging task. We present creative approaches in the development of an interactive system to visualize and characterize nanopillar structures. This research is a result of a collaboration inside a team of scientists and artists, in the course of an artistic residency that occurred in a scientific institution. Before describing the development approaches, we will present a brief introduction to the thematic of nanotechnologies, media arts, and data visualization. This work arose from the need to observe and present nano visualizations during an artistic presentation, and to provide a software solution, that has been developed. The focus of this paper is to describe the technical and creative processes in the development of a reliable scientific visualization system.

Keywords

Nanoscale Nanotechnology Data visualization Characterization Nanopillars Automated SEM characterization Media art Creative technologies 

References

  1. 1.
    Yetisen, A.K., et al.: Art on the nanoscale and beyond. In: Advanced Materials, vol. 28, no. 9, pp. 1724–1742. Wiley-Blackwell, Hoboken (2016).  https://doi.org/10.1002/adma.201502382. ISBN 1521-4095, ISSN 15214095CrossRefGoogle Scholar
  2. 2.
    Mission - Leonardo/International Society for the Arts, Science and Technology. https://www.leonardo.info/mission. Accessed 25 May 2018
  3. 3.
    International Iberian Nanotechnology Laboratory – INL - Interdisciplinary research in Nanotechnology and Nanoscience. http://inl.int/. Accessed 12 May 2018
  4. 4.
    Moura, J.M., Rafael, A., Mendanha, C., Pedro, M.: Nano abstractions. In: 43rd International Conference on Micro and Nano Engineering, Braga (2017)Google Scholar
  5. 5.
    Moura, J.M., Llobet, J., Martins, M., Gaspar, J.: Nano geometries (2018). http://jmartinho.net/nano-geometries/. Accessed 12 Aug 2018
  6. 6.
    Walker, C.M., Winner, E., Hetland, L., Simmons, S., Goldsmith, L.: Visual thinking: art students have an advantage in geometric reasoning. In: Creative Education, vol. 02, no. 01, pp. 22–26 (2011).  https://doi.org/10.4236/ce.2011.21004. ISSN 2151-4755CrossRefGoogle Scholar
  7. 7.
    Candy, L., Edmonds, E.: Practice-based research in the creative arts: Foundations and futures from the front line. Leonardo 51(1), 63–69 (2018).  https://doi.org/10.1162/LEON_a_01471. ISBN 9780262019187, ISSN 0024094XCrossRefGoogle Scholar
  8. 8.
    Root-Bernstein, B., Brown, A., Siler, T., Snelson, K.: Artscience: integrative collaboration to create a sustainable future. Leonardo 44(3), 192 (2011).  https://doi.org/10.1162/LEON_e_00161. ISSN 0024094XCrossRefGoogle Scholar
  9. 9.
    The Royal Society, Why is nanotechnology important? http://invigorate.royalsociety.org/ks5/what-could-nano-do-for-you/why-is-nanotechnology-important.aspx. Accessed 02 June 2018
  10. 10.
    Taniguchi, N.: On the basic concept of nanotechnology. In: Proceedings of the International Conference on Production Engineering, pp. 18–23 (1974)Google Scholar
  11. 11.
    Ratner, B.M., Ratner, D.: Nanotechnology: A Gentle Introduction to the Next Big Idea, vol. 6, no. 2. Prentice Hall (2003).  https://doi.org/10.1016/S1369-7021(03)00236-0. ISBN 9780131014008, ISSN 13697021
  12. 12.
    Mignonneau, L., Sommerer, C.: Nano-scape : experiencing aspects of nanotechnology through a magnetic force-feedback interface. In: Proceedings of the 2005 ACM SIGCHI International Conference on Advances in computer entertainment technology, pp. 200–203 (2005).  https://doi.org/10.1145/1178477.1178507. ISBN 1-59593-110-4
  13. 13.
    Vesna, V., Gimzewski, J.K.: NANO: an exhibition of scale and senses. Leonardo 38(4), 310–311 (2005).  https://doi.org/10.1162/0024094054762070. ISSN 0024-094XCrossRefGoogle Scholar
  14. 14.
    Toumey, C.: Truth and beauty at the nanoscale. Leonardo 42(2), 151–155 (2009).  https://doi.org/10.1162/leon.2009.42.2.151. ISSN 0024-094XCrossRefGoogle Scholar
  15. 15.
    Hawkins, H., Straughan, E.R.: Nano-art, dynamic matter and the sight/sound of touch. Geoforum 51, 130–139 (2014).  https://doi.org/10.1016/j.geoforum.2013.10.010. ISSN 00167185CrossRefGoogle Scholar
  16. 16.
    Grau, O., Veigl, T.: Imagery in the 21st Century. MIT Press, Cambridge (2011).  https://doi.org/10.1016/j.pragma.2013.04.005. ISBN 9780262015721, ISSN 03782166CrossRefGoogle Scholar
  17. 17.
    Kurokawa, R.: ad/ab Atom (2017). http://www.ryoichikurokawa.com/project/aaatom.html. Accessed 10 May 2018
  18. 18.
    AGF, Scale Travels: LanguageHack, por AGF. http://www.gnration.pt/agenda/468#.W2HKY9hKids. Accessed 12 June 2018
  19. 19.
    Scale Travels—exposições—Projetos—Braga Media Arts. http://www.bragamediaarts.com/pt/projetos/detalhe/scale-travels/. Accessed 01 June 2018
  20. 20.
    STARTS - (S + T)*ARTS = STARTS Innovation at the nexus of Science, Technology, and the ARTS. https://www.starts.eu/about/. Accessed 23 June 2018
  21. 21.
    CritCat - João Martinho Moura—VERTIGO Starts Residencies. https://vertigo.starts.eu/calls/2017-2/residencies/sci-fi-miners/detail/. Accessed 20 June 2018
  22. 22.
    NANO2WATER - HeHe - VERTIGO Starts Residencies. https://vertigo.starts.eu/calls/2017-2/residencies/ors-orbital-river-station/detail/. Accessed 20 June 2018
  23. 23.
    Braga - UNESCO Creative Cities Network. https://en.unesco.org/creative-cities/braga. Accessed 17 May 2018
  24. 24.
    Braga Media Arts. http://www.bragamediaarts.com/en/. Accessed 12 Apr 2018
  25. 25.
    Bradski, G.: OpenCV (2000). http://www.opencv.org
  26. 26.
    Fry, B., Reas, C.: Processing.org, Processing (2001). https://processing.org/
  27. 27.
    Lieberman, Z., Castro, A., Open Community: Openframeworks (2004). http://openframeworks.cc
  28. 28.
    Lima, M.: Visual Complexity: Mapping Patterns of Information. Princeton Architectural Press, New York City (2011). ISBN 978-1568989365Google Scholar
  29. 29.
    Johnson, C.: Top scientific visualization research problems. IEEE Comput. Graphics Appl. 24(4), 13–17 (2004).  https://doi.org/10.1109/MCG.2004.20. ISBN 0272-1716 VO – 24, ISSN 02721716MathSciNetCrossRefGoogle Scholar
  30. 30.
    Manovich, L.: What is visualisation? Vis. Stud. 26(1), 36–49 (2011).  https://doi.org/10.1080/1472586X.2011.548488. ISBN 1472-5878, ISSN 1472586XCrossRefGoogle Scholar
  31. 31.
    Doleisch, H., Gasser, M., Hauser, H.: Interactive feature specification for focus + context visualization of complex simulation data. In: VISSYM 2003 Proceedings of the Symposium on Data Visualisation 2003, pp. 239–249 (2003). ISBN 1-58113-698-6Google Scholar
  32. 32.
    Judelman, G.: Aesthetics and inspiration for visualization design: bridging the gap between art and science. In: Proceedings of Eighth International Conference on Information Visualisation 2004, pp. 245–250 (2004).  https://doi.org/10.1109/IV.2004.1320152. ISBN 0-7695-2177-0, ISSN 1093-9547
  33. 33.
    Toumey, C., Nerlich, B., Robinson, C.: Technologies of scientific visualization. Leonardo 48(1), 61–63 (2015).  https://doi.org/10.1162/LEON_a_00896. ISSN 0024-094XCrossRefGoogle Scholar
  34. 34.
    Burri, R.V., Dumit, J.: Social studies of scientific imaging and visualization. In: Hackett, E.J., Amsterdamska, O., Lynch, M., Wajcman, J. (eds.) The Handbook of Science and Technology Studies, 3rd edn, pp. 297–317. MIT Press, Cambridge (2008). ISBN 978-0-262-08364-5Google Scholar
  35. 35.
    Brisson, H.E.: Visualization in art and science. Leonardo 25(3/4), 257 (1992).  https://doi.org/10.2307/1575847. ISSN 0024094XCrossRefzbMATHGoogle Scholar
  36. 36.
    Keim, D.A.: Information visualization and visual data mining. IEEE Trans. Vis. Comput. Graph. 8(1), 1–8 (2002).  https://doi.org/10.1109/2945.981847. ISBN 1077-2626, ISSN 10772626MathSciNetCrossRefGoogle Scholar
  37. 37.
    Tufte, E.R.: Visual Explanations: Images and Quantities. Evidence and Narrative. Graphics Press, Cheshire (1997). ISBN 9781930824157zbMATHGoogle Scholar
  38. 38.
    Tufte, E.: Beautiful Evidence. Graphics Press, Cheshire (2006). ISBN 0961392177 9780961392178Google Scholar
  39. 39.
    Faingold, Y., et al.: Efficient light trapping and broadband absorption of the solar spectrum in nanopillar arrays decorated with deep-subwavelength sidewall features. Nanoscale (2018, accepted)Google Scholar
  40. 40.
    Fan, Z., et al.: Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 8(8), 648–653 (2009).  https://doi.org/10.1038/nmat2493. ISBN 1476-1122, ISSN 14764660CrossRefGoogle Scholar
  41. 41.
    Kandziolka, M., et al.: Silicon nanopillars as a platform for enhanced fluorescence analysis. Anal. Chem. 85(19), 9031–9038 (2013).  https://doi.org/10.1021/ac401500y. ISSN 00032700CrossRefGoogle Scholar
  42. 42.
    Hasan, J., Crawford, R.J., Ivanova, E.P.: Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol. 31(5), 295–304 (2013).  https://doi.org/10.1016/j.tibtech.2013.01.017. ISBN 0167-7799, ISSN 01677799CrossRefGoogle Scholar
  43. 43.
    Bao, X.Q., et al.: Amorphous oxygen-rich molybdenum oxysulfide decorated p-type silicon microwire arrays for efficient photoelectrochemical water reduction. Nano Energy 16, 130–142 (2015).  https://doi.org/10.1016/j.nanoen.2015.06.014. ISBN 22112855, ISSN 22112855CrossRefGoogle Scholar
  44. 44.
    Llobet, J., et al.: Arrays of suspended silicon nanowires defined by ion beam implantation: mechanical coupling and combination with CMOS technology. Nanotechnology 29(150), 155303 (2018).  https://doi.org/10.1088/1361-6528/aaac67. ISSN 13616528CrossRefGoogle Scholar
  45. 45.
    Thermo Fisher: Ifast Software. https://www.fei.com/software/ifast/. Accessed 10 June 2018
  46. 46.
    Teh, C.-H., Chin, R.T.: On the detection of dominant points on digital curves. IEEE Trans. Pattern Anal. Mach. Intell. 11(8), 859–872 (1989).  https://doi.org/10.1109/34.31447. ISSN 01628828CrossRefGoogle Scholar
  47. 47.
    Viégas, F.B., Wattenberg, M.: Artistic data visualization: beyond visual analytics. In: Schuler, D. (ed.) OCSC 2007. LNCS, vol. 4564, pp. 182–191. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73257-0_21. ISBN 9783540732563, ISSN 0302-9743CrossRefGoogle Scholar
  48. 48.
    Brown, A.G.P.: Visualization as a common design language: connecting art and science. Autom. Constr. 12(6), 703–713 (2003).  https://doi.org/10.1016/S0926-5805(03)00044-X. ISSN 0926-5805CrossRefGoogle Scholar
  49. 49.
    Maeda, J.: STEM + Art = STEAM. STEAM (Sci. Technol. Eng. Arts Math.) J. 1(1), 1–3 (2013).  https://doi.org/10.5642/steam.201301.34. ISBN 2327-2074, ISSN 23272074CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  1. 1.BragaPortugal
  2. 2.INL - International Iberian Nanotechnology LaboratoryBragaPortugal

Personalised recommendations