Advertisement

Plants: Unitary Organisms Emerging From Integration and Self-organization of Modules

  • Ulrich LüttgeEmail author
Chapter

Abstract

The organs roots, stems and leaves of plants have evolved under the challenges of the terrestrial environment where they are firmly rooted. Emergence of plants as unitary integrated organisms occurs by integration of these parts, organs or modules. Below this scaling level of morphology and the organs, there are modules on finer scaling levels, tissues at the level of anatomy, organelles and compartments at the level of cell biology, macromolecules at the molecular level and so on. Modules are connected and integrated forming the knots in networks. Networks at a finer scale can integrate, condense and self-organize to form knots in networks at the next coarser scale. In this way, hierarchies of networks are built up leading to the emergence of whole plants. Requirements for the integration are (i) signals carrying information, (ii) receptors for the signals, (iii) transduction of signals within systems and networks, (iv) cross-talk between different types of signals by their translation into each other and (v) configuration of information as instruction for reactions. Integration is organized during development where tight structural and functional correlations are built up under the systemic control of development. Self-organization uses both correlative inhibition and correlative stimulation, with homoiogenetic induction of self-resemblance and heterogenetic induction of unlike-self, respectively. Examples of integration are source-sink relations of water, nutrients and photosynthetic products, induction of flowering, orientation in space under gravity and light, environmental relations under herbivory and salinity. Plants are unitary organisms without a neuronal system. The whole is more than the sum of its parts (Aristotle 384–322 BC).

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th ed. Garland Science, Taylor and Francis BooksGoogle Scholar
  2. Aloni R, Langhans M, Aloni E, Ullrich CI (2004) Role of cytokinin in the regulation of root gravitropism. Planta 220:177–182PubMedCrossRefGoogle Scholar
  3. Bano A, Dörffling K, Bettin D, Hahn H (1993) Abscisic acid and cytokinins as possible root-to-shoot signals in xylem sap of rice plants in drying soil. Aust J Plant Physiol 20:109–115Google Scholar
  4. Baluška F, Ninkovic V (2010) Plant communication from an ecological perspective. Springer, BerlinCrossRefGoogle Scholar
  5. Beck E (2019) Ecology: ecosystems and biodiversity. In: Wegner LH, Lüttge U (eds) Emergence and modularity in life science. Springer, Heidelberg pp 195–213Google Scholar
  6. Behrens HM, Gradmann D, Sievers A (1985) Membrane potential responses following gravistimulation in roots of Lepidium sativum L. Planta 163:463–472PubMedCrossRefGoogle Scholar
  7. Benková E, Michniewicz M, Sauer M, Teichmann T, Seiferotová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602PubMedCrossRefGoogle Scholar
  8. BenZioni A, Vaadia Y, Lips SH (1971) Nitrate uptake by roots as regulated by nitrate reduction products of the shoot. Physiol Plant 24:288–290CrossRefGoogle Scholar
  9. Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) Nature 433:39–44PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bolker JA (2000) Modularity in development and why it matters to evo-devo. Am Zool 4:770–776Google Scholar
  11. Brauner L, Bünning E (1930) Geoelektrischer Effekt und Elektrotropismus. Ber Dtsch Bot Ges 48:470–476Google Scholar
  12. Bruce TJA (2010) Exploiting plant signals in sustainable agriculture. In: Baluška F, Ninkovic V (eds) Plant communication from an ecological perspective. Springer, Berlin Heidelberg, pp 215–227CrossRefGoogle Scholar
  13. Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. Amer Soc Plant Physiol, Rockville, MarylandGoogle Scholar
  14. Cermak J, Matyssek R, Kucera J (1993) Rapid response of large, drought–stressed beech trees to irrigation. Tree Physiol 12:281–290PubMedCrossRefGoogle Scholar
  15. Clarkson DT, Smith FW, Vanden Berg PJ (1983) Regulation of sulphate transport in a tropical legume, Macroptilium atropurpureum, cv. Siratro. J Exp Bot 34:1463–1483CrossRefGoogle Scholar
  16. Comstock JP (2002) Hydraulic and chemical signaling in the control of stomatal conductance and transpiration. J Exp Bot 53:195–200PubMedCrossRefGoogle Scholar
  17. Cooper HD, Clarkson DT (1989) Cycling of amino-nitrogen and other nutrients between shoots and roots in cereals. A possible mechanism integrating shoot and root in the regulation of nutrient uptake. J Exp Bot 40:753–762CrossRefGoogle Scholar
  18. Davies E (2004) New functions for electrical signals in plants. New Phytol 161:607–610CrossRefGoogle Scholar
  19. Davies WJ, Mansfield TA, Hetherington AM (1990) Sensing of soil water status and the regulation of plant growth and development. Plant Cell Environ 13:709–719CrossRefGoogle Scholar
  20. Davies WJ, Tardieu F, Trejo CL (1994) How do chemical signals work in plants that grow in drying soil? Plant Physiol 104:309–314PubMedPubMedCentralCrossRefGoogle Scholar
  21. Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Biol Plant Mol Biol 42:55–76CrossRefGoogle Scholar
  22. Friedman WE, Diggle PK (2011) Charles Darwin and the origins of plant evolutionary developmental biology. Plant Cell 23:1194–1207PubMedPubMedCentralCrossRefGoogle Scholar
  23. Friml J (2003) Auxin transport—shaping the plant. Curr Opin Plant Biol 6:7–12CrossRefGoogle Scholar
  24. Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153PubMedCrossRefPubMedCentralGoogle Scholar
  25. Fromm J, Eschrich W (1993) Electric signals released from roots of willow (Salix viminalis L.) change transpiration and photosynthesis. J Plant Physiol 141:673–680CrossRefGoogle Scholar
  26. Fromm J, Fei H (1998) Electrical signaling and gas exchange in maize plants of drying soil. Plant Sci 132:203–213CrossRefGoogle Scholar
  27. Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257PubMedCrossRefGoogle Scholar
  28. Frost WB, Blevins DG, Barnett NM (1978) Cation pretreatment effects on nitrate uptake, xylem exudates, and malate levels in wheat seedlings. Plant Physiol 61:323–326PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gersani M, Abramsky Z, Falik O (1998) Density-dependent habitat selection in plants. Evol Ecol 12:223–234CrossRefGoogle Scholar
  30. Geßler A, Weber P, Schneider S, Rennenberg H (2003) Bidirectional exchange of amino compounds between phloem and xylem during long-distance transport in Norway spruce trees (Picea abies [L.] Karst.) J Exp Bot 54:1389–1397PubMedCrossRefGoogle Scholar
  31. Gil PM, Gurovich L, Schaffer B, Alcayaga J, Rey S, Iturriaga R (2008) Root to leaf electrical signaling in avocado in response to light and soil water content. J Plant Phys 165:1070–1078CrossRefGoogle Scholar
  32. Gould JG (2002) The structure of evolutionary theory. Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  33. Grams TEE, Koziolek C, Lautner S, Matyssek R, Fromm J (2007) Distinct roles of electric and hydraulic signals on the reaction of leaf gas exchange upon re-irrigation in Zea mays L. Plant Cell Environ 30:79–84PubMedCrossRefGoogle Scholar
  34. Grams TEE, Lautner S, Felle HH, Matyssek R, Fromm J (2009) Heat-induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf. Plant Cell Environ 32:319–326PubMedCrossRefGoogle Scholar
  35. Grieneisen VA, Xu J, Marée AFM, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008–1013PubMedCrossRefGoogle Scholar
  36. Haukioja E (1991) The influence of grazing on the evolution, morphology and physiology of plants as modular organisms. Philos Trans Roy Soc London Ser B Biol Sci 333:241–247CrossRefGoogle Scholar
  37. Heil M (2010) Within-plant signalling by volatiles triggers systemic defences. In: Baluška F, Ninkovic V (eds) Plant communication from an ecological perspective. Springer, Berlin, pp 99–112CrossRefGoogle Scholar
  38. Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335Google Scholar
  39. Herschbach C, Rennenberg H (1994) Influence of glutathione (GSH) on net uptake of sulphate and sulphate transport in tobacco plants. J Exp Bot 45:1069–1076CrossRefGoogle Scholar
  40. Hütt M-Th (2013) A network view on patterns of gene expression and metabolic activity. Nova Acta Leopoldina NF 114(391):183–199Google Scholar
  41. Jeschke WD, Atkins CA, Pate JS (1985) Ion circulation via phloem and xylem between root and shoot of nodulated white lupin. J Plant Physiol 117:319–330CrossRefGoogle Scholar
  42. Jeschke WD, Pate JA (1991a) Cation and chloride partitioning through xylem and phloem within the whole plant of Ricinus communis L. under conditions of salt stress. J Exp Bot 42:1105–1116CrossRefGoogle Scholar
  43. Jeschke WD, Pate JS (1991b) Modelling of the uptake, flow and utilization of C, N and H2O within whole plants of Ricinus communis L. based on empirical data. J Plant Physiol 137:488–498CrossRefGoogle Scholar
  44. Jeschke WD, Pate JS, Atkins CA (1987) Partitioning of K+, Na+, Mg++, and Ca++ through xylem and phloem to component organs of white lupin under mild salinity. J Plant Physiol 128:77–93CrossRefGoogle Scholar
  45. Johnson BR, Lam SK (2010) Self-organization, natural selection, and evolution: cellular hardware and genetic software. Bioscience 60:879–885CrossRefGoogle Scholar
  46. Kadereit JW, Körner C, Kost B, Sonnewald U (2014) Strasburger. Lehrbuch der Pflanzenwissenschaften, 37th edn. Springer, HeidelbergCrossRefGoogle Scholar
  47. Kirkby EA, Knight AH (1977) Influence of the level of nitrate nutrition on ion uptake and assimilation, organic acid accumulation, and cation-anion balance in whole tomato plants. Plant Physiol 66:349–353CrossRefGoogle Scholar
  48. Kolosova N, Bohlmann J (2012) Conifer defense against insects and fungal pathogens. In: Matyssek R, Schnyder H, Oßwald W, Ernst D, Munch JC, Pretzsch (eds) Growth and defence in plants. Resource allocation at multiple scales. Ecological Studies, vol 220. Springer, Heidelberg, pp 85–109CrossRefGoogle Scholar
  49. Körner C (2012) Biological diversity—The essence of life and ecosystem functioning. Nova Acta Leopoldina NF 116(394):147–159Google Scholar
  50. Kost B (2014) Systemische Kontrolle der Entwicklung. In: Kadereit JW, Körner C, Kost B, Sonnewald U (eds) Strasburger, Lehrbuch der Pflanzenwissenschaften, 37th edn. Springer, Heidelberg, pp 282–283Google Scholar
  51. de Kroon H, Huber H, Stuefer JF, van Groenendael JM (2005) A modular concept of phenotypic plasticity in plants. New Phytol 166:73–82PubMedPubMedCentralCrossRefGoogle Scholar
  52. Larsson C-M, Larsson M, Purves JV, Clarkson DT (1991) Translocation and cycling through roots of recently absorbed nitrogen and sulphur in wheat (Triticum aestivum) during vegetative and generative growth. Physiol Plant 82:345–352CrossRefGoogle Scholar
  53. Lautner S, Grams TEE, Matyssek R, Fromm J (2005) Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiol 138:2200–2209PubMedPubMedCentralCrossRefGoogle Scholar
  54. Layer PG (2019) Brains emerging: on modularity and self organization of neuronal development in vivo and in vitro. In: Wegner LH, Lüttge U (eds) Emergence and modularity in life science. Springer, Heidelberg, pp 145–169Google Scholar
  55. Longstreth DJ, Nobel PS (1980) Nutrient influences on leaf photosynthesis. Effects of nitrogen, phosphorus and potassium for Gossypium hirsutum L. Plant Physiol 65:541–543PubMedPubMedCentralCrossRefGoogle Scholar
  56. Loomis WE (1953) Growth and differentiation—an introduction and summary. In: Loomis WE (ed) Growth and differentiation in plants. Iowa State College Press, Ames, pp 1–17Google Scholar
  57. Lorenz K (1977) Die Rückseite des Spiegels. Deutscher Taschenbuchverlag, München, Versuch einer Naturgeschichte menschlichen ErkennensGoogle Scholar
  58. Lucas M, Laplace L, Bennett MJ (2011) Plant systems biology: network matters. Plant Cell Environ 34:535–553PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lüttge U (2012) Modularity and emergence: biology’s challenge in understanding life. Plant Biol 14:865–871PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lüttge U (2013) Whole-plant physiology: synergistic emergence rather than modularity. Progr Bot 74:165–190CrossRefGoogle Scholar
  61. Lüttge U (2016) Physics and the molecular revolution in plant biology: union needed for managing the future. AIMS Biophy 3:501–521CrossRefGoogle Scholar
  62. Lüttge U, Higinbotham N (1979) Transport in plants. Springer, New York, Heidelberg, BerlinGoogle Scholar
  63. Lüttge U, Kluge M, Thiel G (2010) Botanik. Die umfassende Biologie der Pflanzen: Wiley-VCH, WeinheimGoogle Scholar
  64. Marr C, Geertz M, Hütt M-T, Muskhelishvili G (2008) Dissecting the logical types of network control in gene expression profiles. BMS Syst Biol 2:18CrossRefGoogle Scholar
  65. Matyssek R, Agerer R Ernst D, Munch J-C, Oßwald W, Pretzsch H, Priesack E, Schnyder H, Treutter D (2005) The plant’s capacity in regulating resource demand. Plant Biol 7:560–580PubMedCrossRefPubMedCentralGoogle Scholar
  66. Matyssek R, Lüttge U, Rennenberg H (eds) (2013) The alternatives growth and defense: resource allocation at multiple scales in plants. Nova Acta Leopoldina NF 114/No 391Google Scholar
  67. Matyssek R, Maruyama S, Boyer JS (1991) Growth-induced water potentials may mobilize internal water for growth. Plant Cell Environ 14:917–923CrossRefGoogle Scholar
  68. Matyssek R, Schnyder H, Elstner E-F, Munch J-C, Pretzsch H, Sandermann H (2002) Growth and parasite defence in plants: the balance between resource sequestration and retention. Plant Biol 4:133–136CrossRefGoogle Scholar
  69. Matyssek R, Schnyder H, Oßwald W, Ernst D, Munch JC, Pretzsch (eds) (2012a) Growth and defence in plants. Resource allocation at multiple scales. Ecological studies, vol 220. Springer, HeidelbergGoogle Scholar
  70. Matyssek R, Gayler S, zu Castell W, Oßwald W, Ernst D, Pretzsch H, Schnyder H, Munch JC (2012b) Predictability of plant resource allocation: New theory needed? In: Matyssek R, Schnyder H, Oßwald W, Ernst D, Munch JC, Pretzsch (eds) Growth and defence in plants. Resource allocation at multiple scales. Ecological studies, vol 220. Springer, Heidelberg, pp 433–449CrossRefGoogle Scholar
  71. Morris, SK (2003) Life’s solution. Inevitable humans in a lonely universe. Cambridge University Press, New YorkGoogle Scholar
  72. Müller GB (2007) Evo-devo: extending the evolutionary synthesis. Nat Rev Genet 8:939–949CrossRefGoogle Scholar
  73. Münch E (1930) Die Stoffbewegungen in der Pflanze. Gustav Fischer, JenaGoogle Scholar
  74. Ninkovic V (2010) Volatile interaction between undamaged plants: A short cut to coexistence. In: Baluška F, Ninkovic V (eds) Plant communication from an ecological perspective. Springer, Berlin Heidelberg, pp 75–86CrossRefGoogle Scholar
  75. Oßwald W, Fleischmann F, Treutter D (2012) Host-parasite interactions and trade-offs between growth- and defence-related metabolism under changing environments. In: Matyssek R, Schnyder H, Oßwald W, Ernst D, Munch JC, Pretzsch (eds) Growth and defence in plants. Resource allocation at multiple scales. Ecological studies, vol 220. Springer, Heidelberg, pp 53–83CrossRefGoogle Scholar
  76. Paponov IA, Teale WD, Trebar M, Blilou I, Palme K (2005) The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci 10:170–177PubMedCrossRefGoogle Scholar
  77. Peuke AD, Glaab J, Kaiser WM, Jeschke WD (1996) The uptake and flow of C, N and ions between roots and shoots in Ricinus communis L. IV. Flow and metabolism of inorganic nitrogen and malate depending on nitrogen nutrition and salt treatment. J Exp Bot 47:377–385CrossRefGoogle Scholar
  78. Pitman MG (1975) Whole plants. In: Baker DA, Hall JL (eds) Ion transport in plant cells and tissues. North Holland Publ Comp, Amsterdam Oxford, pp 267–308Google Scholar
  79. Rennenberg H, Schmitz K, Bergmann L (1979) Long-distance transport of sulfur in Nicotiana tabacum. Planta 147:57–62PubMedCrossRefGoogle Scholar
  80. Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Ann Rev Plant Biol 57:675–709CrossRefGoogle Scholar
  81. Ruther J, Kleier S (2005) Plant-plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen1-ol. J Chem Ecol 21:2217–2222CrossRefGoogle Scholar
  82. Scheible W-R, Morcuende R, Czechoswski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–2499PubMedPubMedCentralCrossRefGoogle Scholar
  83. Schurr U, Schulze E-D (1996) Effects of drought on nutrient and ABA transport in Ricinus communis. Plant Cell Environ 19:665–674CrossRefGoogle Scholar
  84. Shabala S, Pang J, Zhou M, Shabala L, Cuin T, Nick P, Wegner LH (2009) Electrical signalling and cytokinins mediate effects of light and root cutting on ion uptake in intact plants. Plant Cell Environ 32:194–207CrossRefGoogle Scholar
  85. Shabala S, White RC, Djordjevic MA, Ruan Y-L, Mathesius U (2016) Root-to-shoot signalling: integration of diverse molecules, pathways and functions. Funct Plant Biol 43:87–104CrossRefGoogle Scholar
  86. da Silva MC, Shelp BJ (1990) Xylem-to-phloem transfer of organic nitrogen in young soybean plants. Plant Physiol 92:797–801PubMedPubMedCentralCrossRefGoogle Scholar
  87. Souza GM, Lüttge U (2015) Stability as a phenomenon emergent from plasticity-complexity-diversity in eco-physiology. Progr Bot 76:211–239Google Scholar
  88. Souza GM, Bertolli SC, Lüttge U (2016) Hierarchy and information in a system approach to plant biology: explaining the irreducibility in plant ecophysiology. Progr Bot 77:167–186Google Scholar
  89. Stenz H-G, Weisenseel MH (1991) DC-electric field affects the growth direction and statocyte polarity of root tips (Lepidium sativum) J Plant Physiol 138:335–344CrossRefGoogle Scholar
  90. Stenz H-G, Weisenseel MH (1993) Electrotropism of maize (Zea mays L.) roots. Facts and artifacts. Plant Physiol 101:1107–1111PubMedCrossRefGoogle Scholar
  91. Sutcliffe JF (1976a) Regulation in the whole plant. Enc Plant Physiol 2B (Springer, Berlin) 394–417CrossRefGoogle Scholar
  92. Sutcliffe JF (1976b) Regulation of ion transport in the whole plant. In: Sunderland N (ed) Perspectives in experimental biology, vol II, Botany. Pergamon Press, Oxford, p 542CrossRefGoogle Scholar
  93. Tang A-C, Boyer JS (2003) Root pressurization affects growth-induced water potentials and growth in dehydrated maize plants. J Exp Bot 54:2479–2488PubMedCrossRefGoogle Scholar
  94. Tardieu F, Davies WJ (1993) Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants. Plant Cell Environ 16:341–349CrossRefGoogle Scholar
  95. Tardieu F, Zhang J, Gowing DJG (1993) Stomatal control by both [ABA] in the xylem sap and leaf water status: a test of a model for droughted or ABA-fed field-grown maize. Plant Cell Environ 16:413–420CrossRefGoogle Scholar
  96. Thornley JHM (1972) A balanced quantitative model for root : shoot ratios in vegetative plants. Ann Bot 36:431–441CrossRefGoogle Scholar
  97. Turner NC, Schulze E-D, Gollan T (1985) The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content. II. In the mesophytic herbaceous species Helianthus annuus. Oecologia 65:348–355PubMedCrossRefGoogle Scholar
  98. van Bel AJE (1990) Xylem-phloem exchange via the rays: the undervalued route of transport. J Exp Bot 41:631–644CrossRefGoogle Scholar
  99. Volkov AG (2000) Green plants: electrochemical interfaces. J Electroanalytical Chemistry 483:150–156CrossRefGoogle Scholar
  100. von Dahl CC, Baldwin IT (2007) Deciphering the role of ethylene in plant-herbivore interactions. J Plant Growth Regul 26:201–209CrossRefGoogle Scholar
  101. Wallace W, Pate JS (1967) Nitrate assimilation in higher plants with special reference to the cocklebur (Xanthium pennsylvanicum Wallr.) Ann Bot 31:213–228CrossRefGoogle Scholar
  102. Wartinger A, Heilmeier H, Hartung W, Schulze E-D (1990) Daily and seasonal courses of leaf conductance and abscisic acid in the xylem sap of almond trees [Prunus dulcis (Miller) D.A. Webb] under desert conditions. New Phytol 116:581–587CrossRefGoogle Scholar
  103. Weston DJ, Hanson PJ, Norby RJ, Tuskan GA, Wullschleger SD (2012) From system biology to photosynthesis and whole-plant physiology. Plant Signal Behav 7:260–262PubMedPubMedCentralCrossRefGoogle Scholar
  104. Wikipedia (2012) Emergenz. http://de.wikipedia.org/wiki/Emergenz: Aristoteles, Metaphysik, Buch 8.6. 1045a: 8–10
  105. Wilkinson S, Davies WJ (1997) Xylem sap pH increase: a drought signal received at the apoplastic face of the guard cell which involves the suppression of saturable ABA uptake by the epidermal symplast. Plant Physiol 113:559–573PubMedPubMedCentralCrossRefGoogle Scholar
  106. Wilkinson S, Corlett JE, Oger L, Davies WJ (1998) Effects of xylem pH on transpiration from wild-type and flacca tomato leaves: a vital role for abscisic acid in preventing excessive water loss even from well-watered plants. Plant Physiol 117:703–709PubMedPubMedCentralCrossRefGoogle Scholar
  107. Zhang J, Davies WJ (1990) Changes in the concentration of ABA in xylem sap as a function of changing soil water status can account for changes in leaf conductance and growth. Plant Cell Environ 13:277–285CrossRefGoogle Scholar
  108. Ziegler H (1956) Untersuchungen über die Leitung und Sekretion der Assimilate. Planta 47:447–500CrossRefGoogle Scholar
  109. Ziegler H (1998) Physiologie des Formwechsels. In: Sitte P, Ziegler H, Ehrendorfer F, Bresinsky A (eds) Strasburger, Lehrbuch der Botanik. Gustav Fischer, Stuttgart, pp 362–419Google Scholar
  110. Zimmermann W (1930) Die Phylogenie der Pflanze. Gustav Fischer, JenaGoogle Scholar
  111. zu Castell W, Lüttge U, Matyssek R (2019) Gaia—a holobiont like system emerging from interaction. In: Wegner LH, Lüttge U (eds) Emergence and modularity in life science. Springer, Heidelberg, pp 255–279Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BiologyTechnical University of DarmstadtDarmstadtGermany

Personalised recommendations