Advertisement

Biodegradable Nanoparticles for Drug Delivery and Targeting

  • Viroj Wiwanitkit
Chapter

Abstract

The application of nano-biotechnology in pharmacology is very interesting. The nano-biotechnology can be applied in many steps including drug delivery and targeting. Several new nanoparticles are developed to serve those purposes. In this specific chapter, the author will focus on the biodegradable nanoparticles which can be automatic degraded. The application of biodegradable nanoparticles for drug delivery and targeting will be summarized and presented in this article. Summary on important reports on this topic is also provided in this article.

Keywords

Nano-biotechnology Pharmacology Biodegradable nanoparticle Drug Delivery Targeting 

Notes

Conflict of Interest

 None.

References

  1. 1.
    Wiwanitkit, V., Sereemaspun, A., & Rojanathanes, R. (2009). Effect of gold nanoparticle on the microscopic morphology of white blood cell. Cytopathology, 20(2), 109–110.CrossRefGoogle Scholar
  2. 2.
    Wiwanitkit, V., Sereemaspun, A., & Rojanathanes, R. (2009). Identification of gold nanoparticle in lymphocytes: A confirmation of direct intracellular penetration effect. Turkish Journal of Haematology, 26(1), 29–30.PubMedGoogle Scholar
  3. 3.
    Sereemaspun, A., Rojanathanes, R., & Wiwanitkit, V. (2008). Effect of gold nanoparticle on renal cell: An implication for exposure risk. Renal Failure, 30(3), 323–325.CrossRefGoogle Scholar
  4. 4.
    Wan, W. K., Yang, L., & Padavan, D. T. (2007). Use of degradable and nondegradable nanomaterials for controlled release. Nanomedicine (London, England), 2(4), 483–509.CrossRefGoogle Scholar
  5. 5.
    Wang, C., Wang, J., Chen, T., Luo, Z., Yang, X., Pan, X., et al. (2012). Absorption, pharmacokinetics and disposition of biodegradable nanoscale preparations. Current Drug Metabolism, 13(4), 429–439.CrossRefGoogle Scholar
  6. 6.
    Lin, Y., & Qian, Z. (2012). Absorption, pharmacokinetics and disposition of biodegradable nanoscale preparations. Current Drug Metabolism, 13(4), 337.CrossRefGoogle Scholar
  7. 7.
    Lu, Y., Qi, J., & Wu, W. (2012). Absorption, disposition and pharmacokinetics of nanoemulsions. Current Drug Metabolism, 13(4), 396–417.CrossRefGoogle Scholar
  8. 8.
    Qi, J., Lu, Y., & Wu, W. (2012). Absorption, disposition and pharmacokinetics of solid lipid nanoparticles. Current Drug Metabolism, 13(4), 418–428.CrossRefGoogle Scholar
  9. 9.
    Jian, F., Zhang, Y., Wang, J., Ba, K., Mao, R., Lai, W., et al. (2012). Toxicity of biodegradable nanoscale preparations. Current Drug Metabolism, 13(4), 440–446.CrossRefGoogle Scholar
  10. 10.
    Barani, H., & Montazer, M. (2008). A review on applications of liposomes in textile processing. Journal of Liposome Research, 18(3), 249–262.CrossRefGoogle Scholar
  11. 11.
    Dhiman, B., Divtrannum, D. A., & Saini, S. (2017). An appraisal on various methods of nano particulate formulations. Pharmaceutical Nanotechnology, 5(4), 255–262.PubMedGoogle Scholar
  12. 12.
    Shankar, R., Joshi, M., & Pathak, K. (2018, June 10). Lipid nanoparticles: A novel approach for brain targeting. Pharmaceutical Nanotechnology, 6(2), 81–93.  https://doi.org/10.2174/2211738506666180611100416. [Epub ahead of print].CrossRefGoogle Scholar
  13. 13.
    Cerqueira, B. B. S., Lasham, A., Shelling, A. N., & Al-Kassas, R. (2017). Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells. Materials Science and Engineering. C, Materials for Biological Applications, 76, 593–600.CrossRefGoogle Scholar
  14. 14.
    Zhang, X., Dong, Y., Zeng, X., Liang, X., Li, X., Tao, W., et al. (2014). The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment. Biomaterials, 35(6), 1932–1943.CrossRefGoogle Scholar
  15. 15.
    Kapoor, S., Gupta, D., Kumar, M., Sharma, S., Gupta, A. K., Misro, M. M., et al. (2016). Intracellular delivery of peptide cargos using polyhydroxybutyrate based biodegradable nanoparticles: Studies on antitumor efficacy of BCL-2 converting peptide, NuBCP-9. International Journal of Pharmaceutics, 511(2), 876–889.CrossRefGoogle Scholar
  16. 16.
    Aluri, R., & Jayakannan, M. (2017). Development of l-tyrosine-based enzyme-responsive amphiphilic poly(ester-urethane) nanocarriers for multiple drug delivery to cancer cells. Biomacromolecules, 18(1), 189–200.CrossRefGoogle Scholar
  17. 17.
    Zhao, K., Li, D., Shi, C., Ma, X., Rong, G., Kang, H., et al. (2016). Biodegradable polymeric nanoparticles as the delivery carrier for drug. Current Drug Delivery, 13(4), 494–499.CrossRefGoogle Scholar
  18. 18.
    Bisht, R., Jaiswal, J. K., & Rupenthal, I. D. (2017). Nanoparticle-loaded biodegradable light-responsive in situ forming injectable implants for effective peptide delivery to the posterior segment of the eye. Medical Hypotheses, 103, 5–9.CrossRefGoogle Scholar
  19. 19.
    Salama, H. A., Ghorab, M., Mahmoud, A. A., & Abdel Hady, M. (2017). PLGA nanoparticles as subconjunctival injection for management of glaucoma. AAPS PharmSciTech, 18(7), 2517–2528.CrossRefGoogle Scholar
  20. 20.
    Prakash, M., & Dhesingh, R. S. (2017). Nanoparticle modified drug loaded biodegradable polymeric contact lenses for sustainable ocular drug delivery. Current Drug Delivery, 14(4), 555–565.CrossRefGoogle Scholar
  21. 21.
    Salehi, S., Czugala, M., Stafiej, P., Fathi, M., Bahners, T., Gutmann, J. S., et al. (2017). Poly (glycerol sebacate)-poly (ε-caprolactone) blend nanofibrous scaffold as intrinsic bio- and immunocompatible system for corneal repair. Acta Biomaterialia, 50, 370–380.CrossRefGoogle Scholar
  22. 22.
    Mastorakos, P., Zhang, C., Song, E., Kim, Y. E., Park, H. W., Berry, S., et al. (2017). Biodegradable brain-penetrating DNA nanocomplexes and their use to treat malignant brain tumors. Journal of Controlled Release, 262, 37–46.CrossRefGoogle Scholar
  23. 23.
    Ruan, S., He, Q., & Gao, H. (2015). Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor microenvironment sensitive penetration and diagnosis of glioma. Nanoscale, 7(21), 9487–9496.CrossRefGoogle Scholar
  24. 24.
    Bi, C., Wang, A., Chu, Y., Liu, S., Mu, H., Liu, W., et al. (2016). Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment. International Journal of Nanomedicine, 11, 6547–6559.CrossRefGoogle Scholar
  25. 25.
    Hu, K., Shi, Y., Jiang, W., Han, J., Huang, S., & Jiang, X. (2011). Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: Preparation, characterization and efficacy in Parkinson’s disease. International Journal of Pharmaceutics, 415(1–2), 273–283.CrossRefGoogle Scholar
  26. 26.
    Sánchez-López, E., Ettcheto, M., Egea, M. A., Espina, M., Calpena, A. C., Folch, J., et al. (2017). New potential strategies for Alzheimer’s disease prevention: Pegylated biodegradable dexibuprofen nanospheres administration to APPswe/PS1dE9. Nanomedicine, 13(3), 1171–1182.CrossRefGoogle Scholar
  27. 27.
    Herran, E., Perez-Gonzalez, R., Igartua, M., Pedraz, J. L., Carro, E., & Hernandez, R. M. (2015). Enhanced hippocampal neurogenesis in APP/Ps1 mouse model of Alzheimer’s disease after implantation of VEGF-loaded PLGA nanospheres. Current Alzheimer Research, 12(10), 932–940.CrossRefGoogle Scholar
  28. 28.
    Sun, D., Li, N., Zhang, W., Zhao, Z., Mou, Z., Huang, D., et al. (2016). Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease. Colloids and Surfaces. B, Biointerfaces, 148, 116–129.CrossRefGoogle Scholar
  29. 29.
    Bangde, P., Atale, S., Dey, A., Pandit, A., Dandekar, P., & Jain, R. (2017). Potential gene therapy towards treating neurodegenerative diseases employing polymeric nanosystems. Current Gene Therapy, 17(2), 170–183.CrossRefGoogle Scholar
  30. 30.
    Huang, R., Ma, H., Guo, Y., Liu, S., Kuang, Y., Shao, K., et al. (2013). Angiopep-conjugated nanoparticles for targeted long-term gene therapy of Parkinson’s disease. Pharmaceutical Research, 30(10), 2549–2559.CrossRefGoogle Scholar
  31. 31.
    Mohideen, M., Quijano, E., Song, E., Deng, Y., Panse, G., Zhang, W., et al. (2017). Degradable bioadhesive nanoparticles for prolonged intravaginal delivery and retention of elvitegravir. Biomaterials, 144, 144–154.CrossRefGoogle Scholar
  32. 32.
    Caizhen, G., Yan, G., Ronron, C., Lirong, Y., Panpan, C., Xuemei, H., et al. (2015). Zirconium phosphatidylcholine-based nanocapsules as an in vivo degradable drug delivery system of MAP 30, a momordica anti-HIV protein. International Journal of Pharmaceutics, 483(1–2), 188–199.CrossRefGoogle Scholar
  33. 33.
    Luo, L., Du, T., Zhang, J., Zhao, W., Cheng, H., Yang, Y., et al. (2016). Efficient inhibition of ovarian cancer by degradable nanoparticle-delivered survivin T34A gene. International Journal of Nanomedicine, 11, 501–512.CrossRefGoogle Scholar
  34. 34.
    Zhang, F., Smolen, J. A., Zhang, S., Li, R., Shah, P. N., Cho, S., et al. (2015). Degradable polyphosphoester-based silver-loaded nanoparticles as therapeutics for bacterial lung infections. Nanoscale, 7(6), 2265–2270.CrossRefGoogle Scholar
  35. 35.
    Wang, Y. F., Jin, A. M., Wei, K., Wang, X. D., Tang, S. H., & Min, S. X. (2006). Development of an anti-infection nano-hydroxyapatite drug delivery microsphere and its drug-release in vitro. Nan Fang Yi Ke Da Xue Xue Bao, 26(6), 754–756.PubMedGoogle Scholar
  36. 36.
    Martínez Rivas, C. J., Tarhini, M., Badri, W., Miladi, K., Greige-Gerges, H., Nazari, Q. A., et al. (2017). Nanoprecipitation process: From encapsulation to drug delivery. International Journal of Pharmaceutics, 532(1), 66–81.CrossRefGoogle Scholar
  37. 37.
    Ho, B. N., Pfeffer, C. M., & Singh, A. T. K. (2017). Update on nanotechnology-based drug delivery systems in cancer treatment. Anticancer Research, 37(11), 5975–5981.PubMedGoogle Scholar
  38. 38.
    Grossen, P., Witzigmann, D., Sieber, S., & Huwyler, J. (2017). PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application. Journal of Controlled Release, 260, 46–60.CrossRefGoogle Scholar
  39. 39.
    Gou, M., Zheng, X., Men, K., Zhang, J., Zheng, L., Wang, X., et al. (2009). Poly(epsilon-caprolactone)/poly(ethylene glycol)/poly(epsilon-caprolactone) nanoparticles: Preparation, characterization, and application in doxorubicin delivery. The Journal of Physical Chemistry. B, 113(39), 12928–12933.CrossRefGoogle Scholar
  40. 40.
    Zhang, J., Men, K., Gu, Y., Wang, X., Gou, M., Guo, G., et al. (2011). Preparation of core cross-linked PCL-PEG-PCL micelles for doxorubicin delivery in vitro. Journal of Nanoscience and Nanotechnology, 11(6), 5054–5061.CrossRefGoogle Scholar
  41. 41.
    Gou, M., Zheng, L., Peng, X., Men, K., Zheng, X., Zeng, S., et al. (2009). Poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCL-PEG-PCL) nanoparticles for honokiol delivery in vitro. International Journal of Pharmaceutics, 375(1–2), 170–176.CrossRefGoogle Scholar
  42. 42.
    Cho, H., Gao, J., & Kwon, G. S. (2016). PEG-b-PLA micelles and PLGA-b-PEG-b-PLGA sol-gels for drug delivery. Journal of Controlled Release, 240, 191–201.CrossRefGoogle Scholar
  43. 43.
    Cho, H., & Kwon, G. S. (2014). Thermosensitive poly-(d,l-lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly-(d,l-lactide-co-glycolide) hydrogels for multi-drug delivery. Journal of Drug Targeting, 22(7), 669–677.CrossRefGoogle Scholar
  44. 44.
    Vijayakumar, M. R., Muthu, M. S., & Singh, S. (2013). Copolymers of poly(lactic acid) and D-α-tocopheryl polyethylene glycol 1000 succinate-based nanomedicines: Versatile multifunctional platforms for cancer diagnosis and therapy. Expert Opinion on Drug Delivery, 10(4), 529–543.CrossRefGoogle Scholar
  45. 45.
    Suksiriworapong, J., Phoca, K., Ngamsom, S., Sripha, K., Moongkarndi, P., & Junyaprasert, V. B. (2016). Comparison of poly(ε-caprolactone) chain lengths of poly(ε-caprolactone)-co-d-α-tocopheryl-poly(ethylene glycol) 1000 succinate nanoparticles for enhancement of quercetin delivery to SKBR3 breast cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 101, 15–24.CrossRefGoogle Scholar
  46. 46.
    Chuang, S. Y., Lin, C. H., Huang, T. H., & Fang, J. Y. (2018). Lipid-based nanoparticles as a potential delivery approach in the treatment of rheumatoid arthritis. Nanomaterials (Basel), 8(1), E42.CrossRefGoogle Scholar
  47. 47.
    Wang, Y., Li, P., Truong-Dinh Tran, T., Zhang, J., & Kong, L. (2016). Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials (Basel), 6(2), E26.CrossRefGoogle Scholar
  48. 48.
    Aw, M. S., & Paniwnyk, L. (2017). Overcoming T. gondii infection and intracellular protein nanocapsules as biomaterials for ultrasonically controlled drug release. Biomaterials Science, 5(10), 1944–1961.CrossRefGoogle Scholar
  49. 49.
    Wiwanitkit, V. (2012). Interest in paromomycin for the treatment of visceral leishmaniasis (kala-azar). Therapeutics and Clinical Risk Management, 8, 323–328.CrossRefGoogle Scholar
  50. 50.
    Bricaire, F. (1998). Liposomes: Promising perspectives. Presse Médicale, 27(Suppl 5), 7–8.Google Scholar
  51. 51.
    Carrillo-Muñoz, A. J., Quindós, G., Tur, C., Ruesga, M., Alonso, R., del Valle, O., et al. (2000). Comparative in vitro antifungal activity of amphotericin B lipid complex, amphotericin B and fluconazole. Chemotherapy, 46(4), 235–244.CrossRefGoogle Scholar
  52. 52.
    Pedrini, I., Gazzano, E., Chegaev, K., Rolando, B., Marengo, A., Kopecka, J., et al. (2014). Liposomal nitrooxy-doxorubicin: One step over caelyx in drug-resistant human cancer cells. Molecular Pharmaceutics, 11(9), 3068–3079.CrossRefGoogle Scholar
  53. 53.
    Rom, J., Bechstein, S., Domschke, C., Golatta, M., Mayer, C., Heil, J., et al. (2014). Efficacy and toxicity profile of pegylated liposomal doxorubicin (Caelyx) in patients with advanced breast cancer. Anti-Cancer Drugs, 25(2), 219–224.CrossRefGoogle Scholar
  54. 54.
    Tong, Y. C., Kaye, A. D., & Urman, R. D. (2014). Liposomal bupivacaine and clinical outcomes. Best Practice and Research. Clinical Anaesthesiology, 28(1), 15–27.CrossRefGoogle Scholar
  55. 55.
    Viscusi, E. R., Sinatra, R., Onel, E., & Ramamoorthy, S. L. (2014). The safety of liposome bupivacaine, a novel local analgesic formulation. The Clinical Journal of Pain, 30(2), 102–110.PubMedGoogle Scholar
  56. 56.
    Gnacadja, G. (2017, December 6). An invitation to pharmacostatics. Bulletin of Mathematical Biology.  https://doi.org/10.1007/s11538-017-0369-z. [Epub ahead of print].

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Viroj Wiwanitkit
    • 1
    • 2
    • 3
    • 4
  1. 1.DY Patil UniversityPuneIndia
  2. 2.Joseph Ayobabalola UniversityIlara-MokinNigeria
  3. 3.Faculty of MedicineUniversity of NisNisSerbia
  4. 4.Hainan Medical UniversityHaikouChina

Personalised recommendations